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Abstract
In this paper, we introduce Personalized User-Defined Key-
word Spotting (PUKWS), a novel pipeline specifically de-
signed for enhancing household environments by integrating
user-defined keyword spotting (KWS) with open-set speaker
identification (SID) into a cascading dual sub-system structure.
For KWS, we present multi-modal user-defined keyword spot-
ting (M-UDKWS), a novel approach that leverages multi-modal
prompts for text-audio multimodal enrollment, and optimizes
phonetic and semantic feature extraction to synergize text and
audio modalities. This innovation not only stabilizes detection
by reducing mismatches between query audio and support text
embeddings but also excels in handling potentially confusing
keywords. For open-set SID, we adopt advanced open-set learn-
ing techniques to propose speaker reciprocal points learning
(SRPL), addressing the significant challenge of being aware of
unknown speakers without compromising known speaker iden-
tification. To boost the overall performance of the PUKWS
pipeline, we employ a cutting-edge data augmentation strat-
egy that includes hard negative mining, rule-based procedures,
GPT, and zero-shot voice cloning, thereby enhancing both M-
UDKWS and SRPL components. Through exhaustive evalua-
tions on various datasets and testing scenarios, we demonstrate
the efficacy of our methods. PUKWS showcases a 34.8% im-
provement over existing baselines, significantly enhancing us-
ability in household settings.
Index Terms: user-defined keyword spotting, open-set speaker
identification, few-shot learning, data mining

1. Introduction
Personalized user-defined keyword spotting (PUKWS), which
includes customized word detection and specific speaker ver-
ification, has become more prevalent in people’s daily lives
through smart terminals and in-vehicle devices [1]. Duration
enrollment, users will repeatedly read their preferred phrases,
and the device records both the content and speaker informa-
tion of these audio clips. In the inference stage, the device com-
pares the input audio with enrollment information to determine
whether it needs to be woken up [2, 3].

Currently, the most prevalent approach is to combine key-
word spotting (KWS) and speaker verification (SV) as a cas-
cade system, where they are independently executed within the
pipeline [3, 4, 5, 6, 7]. In general, low-cost KWS will constantly
detect whether the target phrase appears in continuous speech.
Once triggered, relevant speech segments are fed into the high-
cost SV for identity authentication [1, 2]. Another approach
involves text-dependent speaker verification (TD-SV) [8]. Joint
optimization enables the integration of phoneme and speaker
information, which improves the performance of SV [3, 9, 10].
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Figure 1: Overview of the personalized user-defined keyword
spotting system.

However, the current KWS and SV have several limitations. On
the one hand, they are text-dependent, limiting the flexibility of
customized keywords [2, 3, 6, 9, 10]. On the other hand, SV
focus primarily on one-to-one speaker verification rather than
the more complex and useful one-to-many speaker identifica-
tion (SID), lacking optimization for specific scenarios or acous-
tic domains [11, 12, 13, 14, 15].

Historically, Large Vocabulary Continuous Speech Recog-
nition (LVCSR) has been utilized in user-defined keyword spot-
ting systems [5], but its efficiency is questioned. To address
its inefficiency, researchers have focused on the Query-by-
Example (QbyE) approach [16, 17]. A mainstream solution is
Query-by-Audio (QbyA), which detects keyword spotting by
efficient template matching based on acoustic features extracted
from speech, such as bottleneck feature and phoneme posterior
probability [1, 5], or acoustic word embeddings [18, 19, 20]. In
order to improve the robustness of the system to the variation
of audio samples, some recent works propose Query-by-Text
(QbyT) [21, 22, 23, 24, 25], which extracts text and audio fea-
tures separately and discriminates the presence of target words
in speech based on the monotonicity matching of phonemes and



speech.

A significant challenge in current researches is the lack
of ability to effectively utilize multi-modal enrollment data.
Considering the usability of speech and text for accurate key-
word spotting, we propose a multimodal keyword spotting
method called multi-modal user-defined keyword spotting (M-
UDKWS). We propose to extract the features of enrolled text
and template audio respectively, match them with the query au-
dio using a pattern extractor module, and then decide whether
the query audio contains the target word or not by using a pat-
tern discriminator. Additionally, we use the pre-trained G2P
[21] and DistilBERT [26] based text content modeling modules
to extract the phonetic and semantic features of the enrolled
text, respectively. This approach significantly enhances M-
UDKWS’s capability to distinguish between homophones and
synonyms, thereby improving performance in scenarios with
potentially confusing keywords.

In household environments, personalized KWS heavily re-
lies on accurately identifying speakers. These models, designed
for speaker identification adopt a few-shot learning approach
for precise recognition of in-house speakers, effectively utiliz-
ing target speaker voice print characteristics in the household
[27]. A notable gap is the difficulty in detecting unknown speak-
ers while focusing on known speakers identification–a challenge
known as open-set speaker identification [13]. To bridge this
gap, we embrace the advanced open-set learning approach [28],
introducing a novel training method, speaker reciprocal points
learning (SRPL), tailored for robust open-set SID in household
settings.

By integrating M-UDKWS and SRPL, we establish the per-
sonalized user-defined keyword spotting system (PUKWS), as
illustrated in Figure 1. To further bolster the performance of
the PUKWS. We propose a data augmentation strategy with
multiple advanced tools. We employ a hard negative mining
approach, coupling rule-based procedure, GPT and zero-shot
voice cloning for data synthesis, enriching both KWS and SID
sub-processes. This strategy enhances our training effective-
ness, ensuring our methods are well-equipped to handle the
complexities of hard cases for KWS and open-set SID scenar-
ios.

Our main contributions are as follows:

• Developed an innovative multi-modal, two-branch enroll-
ment architecture for Query-by-Example KWS, optimizing
phonetic and semantic feature extraction from input text to
effectively merge text and audio modalities.

• Introduced an optimized training approach for open-set
Speaker Identification in household scenarios, utilizing the
proposed SRPL algorithm. This approach focuses on rapid,
few-shot learning for unknown-speaker aware open-set SID,
leveraging the WavLM-Xvector speaker encoder for en-
hanced performance.

• Implemented a comprehensive data augmentation strategy
that integrates advanced tools, including zero-shot voice
cloning, rule-based procedures, and Large-Language Model
(GPT)-based negative sample mining, to support the con-
struction of the PUKWS pipeline.

• Conducted individual evaluations of the proposed M-
UDKWS and SRPL algorithms, and a pipeline evaluation
of the proposed PUKWS, using thorough metrics to demon-
strate the effectiveness of our approaches.

2. Related Work
2.1. User-defined Keyword Spotting

User-defined keyword spotting (UDKWS) aims to detect
whether the target words appear in consecutive speech. There
are mainly two types of existing UDKWS.

The traditional approach utilizes a large vocabulary con-
tinuous speech recognition (LVCSR), followed by a keyword
spotting module that searches for keywords in the lattice gen-
erated by the LVCSR module [29, 30]. The LVCSR module
uses a large number of audio-text pairs to train a traditional
automatic speech recognition model on the generated lattice,
containing decoded information for a given speech. This ap-
proach provides high accuracy and enables easy keyword cus-
tomization without retraining. However, it is inefficient due to
redundant information and experiences significant performance
decline when handling out-of-vocabulary words [1, 5].

To address the inefficiency of LVCSR, researchers have
focused on the Query-by-Example (QbyE) approach [16, 17],
which consists of two main approaches: Query-by-Audio
(QbyA) and Query-by-Text (QbyT). The QbyA approach uti-
lizes acoustic features extracted from enrolled audio and query
audio to measure their similarity using an efficient matching al-
gorithm. [1] used frame-level bottleneck feature (BNF) com-
bined with the dynamic time warping (DTW) matching algo-
rithm. [5] improved the performance of UDKWS by using
phoneme posterior probability (PPP) as a second-stage KWS
model for multistage detection. Acoustic word embedding
(AWE) [18, 19, 20], which maps variable-length speech signals
into fixed-dimension word embeddings and utilizes metric algo-
rithms such as cosine similarity to replace the inefficient DTW,
has also found wide application. [31] extended the method to
acoustic span embedding to achieve better results in detecting
phrases.

To enhance the model’s robustness to speech variations, re-
cent research efforts have focused on QbyT. [21] exploits the
correspondence between text and speech, outperform traditional
QbyA approaches. Expanding upon this finding, [22, 23] fur-
ther enhances the encoder and matching methods, significantly
improving QbyT performance. [24] proposes the use of mem-
ory to implement the conversion of text features to speech fea-
tures, reducing the mismatch between text and speech feature
spaces and enhancing the model’s robustness against homo-
phones through the generation of confusing words. Conversely,
[25] utilizes a larger scale pre-training approach, thereby im-
proving the effectiveness of QbyT.

2.2. Speaker Identification and Open-set Learning

Speaker identification encompasses two main scenarios:
closed-set and open-set. In closed-set speaker identification,
test utterances are assumed to originate from a pre-enrolled
speaker. This scenario typically employs multi-class classifi-
cation loss for tuning [14, 32], prototype learning loss to bolster
few-shot learning capabilities [33, 34], or graph-based learn-
ing methods [27]. However, these approaches primarily focus
on optimizing closed-set classification, which may not fully ad-
dress real-world application needs.

Recent efforts in the machine learning field are increasingly
directed towards enabling open-set learning capabilities, as seen
in studies on Reciprocal Points Learning or Adversarial Recip-
rocal Points Learning [28, 35, 36]. These methods have shown
promising results in enhancing open-set recognition across var-
ious computer vision tasks. Open-set speaker identification,
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Figure 2: Overview of the M-UDKWS framework.

wherein the test utterance might be from an unenrolled ”guest”
speaker, is more aligned with real-world situations where not all
utterances originate from known speakers. Although these ap-
proaches using i-vector based systems [37], or prototype-based
loss learning [38, 13, 39], have demonstrated certain advance-
ments, they often fall short of optimal performance in complex
real-world scenarios.

In the realm of speaker recognition, recent advance-
ments have prominently featured the development of advanced
speaker encoders, such as X-vectors [40], ResNet [13], and the
state-of-the-art WavLM based pretrained-audio models [41] or
other self-supervised learning (SSL) based audio models [42].
These encoders mark significant technological progress in the
field. However, despite the utilization of these advanced speaker
encoders, the quest to refine and optimize Speaker Identification
(SID) algorithms remains critical. This underscores the neces-
sity for continued exploration and enhancement to fully lever-
age these advancements in addressing the complex challenges
of open-set speaker identification.

3. Multi-Modal User-Defined Keyword
Spotting (M-UDKWS)

In this section, we introduce our proposed method, the Multi-
Modal User-defined Keyword Spotting (M-UDKWS), as illus-
trated in Figure 2. The M-UDKWS framework comprises three
integral processes: feature extractor, pattern extractor, and pat-
tern discriminator. The M-UDKWS model distinctively em-
ploys both keyword text and audio as multi-modal templates
in its support branch, significantly enhancing its ability to ac-
curately discriminate whether the features extracted from query
audio are aligned with these support templates. This approach

is crucial in facilitating dual-modality enrollment during the in-
ference phase.

3.1. Model architecture

3.1.1. Feature Extractor

The feature extractor module consists of a support branch and a
query branch, as shown in Figure 2. Inspired by EMKWS [23]
and CED [24], we use the Conformer [43] architecture as the
query branch of the audio encoder to generate the embedding
for a given audio input signal. The Conformer integrates the
powerful properties of self-attention to learn global interactions
and convolutions to effectively capture local correlations. In
the keyword spotting task, the lightweight Conformer performs
well [23, 24].

For the support branch, we employ a novel approach us-
ing both keyword text and template audio as multi-modal tar-
gets. The encoding of support keyword texts begins with the ap-
plication of a pre-trained Grapheme-to-Phoneme (G2P) model
[21, 22, 24] for capturing phonetic features. Additionally, Dis-
tilBERT1 [23, 44], a model adept at natural language under-
standing, is used to enhance word-level encoding. This ap-
proach, integrating both phonetic and semantic representations,
yields a richer embedding of the input text. Furthermore, we
define template audio as an adaptive bias for bridging the gap
between keyword text space and query audio space. For this,
we utilize the pre-trained WavLM2[41], which excels in gener-
ating comprehensive audio features. WavLM’s ability to create
effective acoustic embeddings provides a deeper insight into the
nature of audio signals.

1https://huggingface.co/distilbert-base-uncased
2https://github.com/microsoft/unilm/tree/master/wavlm



Through the feature extractor module, we represent the
query audio features as Eq ∈ RTq×d, the support phoneme
features as Es

p ∈ RTs
p×d, the support text features Es

t ∈
RTs

t ×d and the support audio features as Es
a ∈ RTs

a×d, where
T q represents the query audio frame length, T s

p and T s
t respec-

tively represent the number of support phonemes and support
subwords, T s

a represents the length of the support audio frame,
and d represents the frame dimension.

3.1.2. Pattern Extractor

The pattern extractor is based on the self-attention mechanism.
As detailed in [22], the self-attention method does not require
other modules in the fusion process of multiple modalities, pre-
senting a concise and parameter-efficient approach for multi-
modal feature fusion. The matrix of attention outputs for a set
of queries Q, with keys K and values V packed into matrices, is
computed as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

As demonstrated in Figure 2, the pattern extractor consists
of a Text-Audio Attention module (TAA) and an Audio-Audio
Attention module (AAA).

The TAA module processes three inputs: the query audio
features Eq, the support phoneme features Es

p, and the sup-
port text features Es

t. Its function is to conduct cross-modal
matching between text and audio modalities, specifically deter-
mining if the query audio feature aligns with the target keyword
text representation. To differentiate features derived from these
sources, we use three learnable coding vectors etype, each in-
dicating the source of the features. Temporal position encod-
ing, denoted as epos and following sinusoidal position encod-
ing, is also incorporated. This results in the transformer inputs
as shown in Equation (2).

E = E + epos + etype (2)

Subsequently, the TAA module is applied to identify cross-
modal correlations between support texts, support phonemes,
and query audios. The transformed features Eq , Es

p, and Es
t

are concatenated along the time dimension as Ec
ta, and the joint

features Ej
ta is computed using self-attention as per Equation

(1):

Ec
ta = (Eq;Es

p;E
s
t ) ∈ R(Tq+Ts

p+Ts
t )×d (3)

Ej
ta = Attention(Ec

ta, E
c
ta, E

c
ta) ∈ R(Tq+Ts

p+Ts
t )×d (4)

The AAA module takes two specific inputs: the query au-
dio embedding Eq and the support audio embedding Es

a. Its
objective is to verify if the query audio features match any rep-
resentation in the template audio. To distinguish between em-
beddings from these sources, we apply similar learnable type
coding vectors and position encoding as outlined in Equation
(2). The AAA module then processes these to identify matches
within the audio modality. The joint features Ej

aa is calculated
using the defined attention mechanism:

Ec
aa = (Eq;Es

a) ∈ R(Tq+Ts
a )×d (5)

Ej
aa = Attention(Ec

aa, E
c
aa, E

c
aa) ∈ R(Tq+Ts

a )×d (6)

3.1.3. Pattern Discriminator

For the pattern discriminator, we utilize a GRU module to de-
rive utterance-level posterior probabilities from the text-audio
joint embedding Ej

ta and the audio-audio joint embedding Ej
aa.

These probabilities are denoted as Putttext and Puttaudio , and
are computed as follows:

Putt text = GRU(Ej
ta) (7)

Putt audio = GRU(Ej
aa) (8)

Conceptually, the keyword spotting (KWS) decision primar-
ily relies on the more stable output from ’audio query text’,
with ’audio query audio’ providing supplementary information.
Thus, we express the decision output as Putt text, enhanced by
Putt audio to jointly assess utterance-level matching:

Putt = σ(Wu · (Putt text + Putt audio) + bu) (9)

Moreover, we incorporate text matching probabilities,
Pphon and Ptext, to improve frame-level matching between
the query and support. As demonstrated in Figure 2, we sep-
arate the phoneme sequence (Ej

ta)phon and the word sequence
(Ej

ta)text from the text-speech joint embedding Ej
ta. The sub-

scripts ’phon’ and ’text’ indicate frame indices in the ranges
(T q , T q + T s

p ] and (T q + T s
p , T q + T s

p + T s
t ], respectively.

These sequences are processed through a fully connected layer
followed by a sigmoid function:

Pphon = σ(W p · (Ej
ta)phon + bp) (10)

Ptext = σ(W t · (Ej
ta)text + bt) (11)

Here, W , b, and σ represent the trainable weights, biases, and
sigmoid functions, respectively.

3.2. Training Approach

Our training objective is denoted Ltotal, which consists of a
combination of three binary cross-entropy (BCE) losses. These
include the utterance-level loss (Lutt) as the main loss, and
two auxiliary losses: phoneme-level detection loss (Lphon) and
word-level detection loss (Ltext),

Ltotal = Lutt + Lphoneme + Ltext (12)

3.2.1. Utterance-level detection loss

The utterance-level detection loss is used to evaluate the simi-
larity of the query branch and support branch. If the query audio
is the target keyword, the label is 1, otherwise it is 0, and binary
cross entropy (BCE) is used to calculate the loss.

3.2.2. Auxiliary detection loss

• Phoneme-level detection loss: We introduces phoneme-
level detection loss to enhance the model’s ability to distin-
guish between similar pronunciations (such as ”the waiter”
and ”the water”). This process rely on alignment information
of speech sounds and phonemes. 1 if the phoneme sequence
of the speech tag matches the phoneme sequence of the key-
word tag, 0 otherwise.

yphon =

{
1 if ys

phon = yq
phon

0 otherwise (13)

Here, ys
phon signifies the sequence of phonemes associated

with the support keyword text, while yq
phon represents the se-

quence of phonemes associated with the query keyword text.



• Word-level detection loss: To capitalize on the semantic
differences between similar words and enhance the model’s
ability to discriminate, we introduce word-level detection
loss. This approach is particularly effective for words like
”waiter” and ”water”, where distinct text embeddings are ev-
ident. The process involves assigning a value of 1 when the
text sequence of the query speech matches the text sequence
of the target word. In cases where they do not align, a value
of 0 is assigned.

ytext =

{
1 if ys

text = yq
text

0 otherwise (14)

Here, ys
text represents the word sequence associated with the

support keyword text, and yq
text represents the word sequence

associated with the query keyword text.

4. Open-set Speaker Identification with
Speaker Reciprocal Points

To refine embeddings for enhanced distinction within a
household-specific domain, we propose employing lightweight
adaptation models. These models adjust the speaker embed-
dings to better suit the target scenarios. As depicted in Fig-
ure 3, we augment the WavLM frontend with X-vector model
to produce output Ewv , which, after transformation by the
Lightweight Adaptor, yields the speaker-specific embedding
Espk:

Espk = Light(Xvector(Ewv)) (15)

4.1. Training Approach with Speaker Reciprocal Points

Our innovative method for open-set Speaker Identification
(SID) employs specialized learning techniques designed for ac-
curate speaker recognition from limited data. Diverging from
prototype learning loss methods [34, 39], our approach, inspired
by [28], adopts Reciprocal Points Learning (RPL) and tailors
it for SID, hence the term Speaker Reciprocal Points Learning
(SRPL). This strategy is particularly suited for scenarios where
the system encounters speakers not included in the training data.
We apply a training approach that is aware of both known and
unknown speakers, which is key to improving the system’s ac-
curacy and robustness for real-world application. As conceptu-
ally shown in Figure 4, this optimization ensures that known
speaker embeddings are optimally distributed throughout the
space, while concurrently securing a low magnitude area for
the learning of unknown speakers

The WavLM X-vector front-end, optimized with an angle-
based learning strategy, differs from the method in [28].
We measure the distance between reciprocal points (RP) and
speaker embeddings through the inner product of the learnable
RP and adapted feature embeddings. This inner product serves
as a gauge for the proximity between embeddings and the class-
specific learning RPs. SRPL strategically maximizes the dis-
tance between learnable embeddings and RPs:

dd(Espk, P
k) = Espk · P k,

d(Espk, P
k) = −dd(Espk, P

k).
(16)

Class distances are employed to compute the optimization
probabilities for known classes to enhance their distinctiveness:

p(y = k|Espk, P ) =
ed(Espk,Pk)∑N
i=1 e

d(Espk,P i)
, (17)

Few-shot Target Audio
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Figure 3: Open-set SID with speaker reciprocal points learning
(SRPL).

Lc(x; θ, P ) = − log p(y = k|x, P ), (18)

where P k are the RPs for the corresponding known speakers
and P is defined as the set of all RPs.

The essence of RPL lies in the optimization of the speaker
manifold, particularly in confining samples from a general pool
of unknowns DU within a predefined radius R. The primary
aim, as outlined in [28], is to ensure that the maximum dis-
tance between sample sets DU and D ̸=k

L to the RPs P k remains
within R. Here, D ̸=k

L refers to the negative samples known from
class k.

max(d(D ̸=k
L ∪DU , P

k)) ≤ R. (19)

which is equally formulated as,

de(Espk, P
k) =∥ Espk − P k ∥22,

Lo(xi; θ, P
k, R) = max(de(Espk, P

k)−R, 0).
(20)

The Euclidean distance de(·) is leveraged to ensure the
magnitude optimization for unknowns is effectively contained.
This objective is articulated as optimizing the embeddings in re-
lation to the reciprocal points, which act as benchmarks to limit
the space occupied by unknowns:

LRPL(Espk, y; θ, P,R) = Lc(Espk; θ, P )+λLo(Espk; θ, P,R).
(21)
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Figure 4: Open-set Learning Loss Comparison, adapted from
[45].

4.2. Adversarial Enhancement with Negative Audio In-
stance

It is important to note that for typical household few-shot SID
tasks, the acquisition of DU is not usually considered, mean-
ing that Equation (21) is optimized with known samples from
DL alone. However, negative samples representing unknowns
can be sourced either through data augmentation, as discussed
in Section 5, or collected randomly in real-world settings. To
effectively utilize negative samples, [28] suggests using a Gen-
erative Adversarial Network (GAN) to create Confusion Sam-
ples (CS), which has shown to improve results when trained
with reciprocal points. For SID tasks, we refine this method to
utilize audio-level confusion training samples and incorporate
them into the SRPL learning framework. This integration in-
volves using confusion data in the adversarial learning process
to optimize the negative samples z ∈ DU and maximize their
entropy H(·) across all RPs, thus achieving the SRPL-CS opti-
mization goal:

min
θ

[LRPL(Espk, y; θ)− β ·H(z, P )] , (22)

5. Data Augmentation with Advanced Tools
To bolster the performance of the Multi-Modal User-Defined
Keyword Spotting (M-UDKWS) system, particularly in chal-
lenging scenarios, and to enhance the performance of Open-Set
Speaker Identification in detecting unknown speakers, we have
developed a data augmentation pipeline, as illustrated in Figure
5. This pipeline consists of two main components: Negative
Text Mining (NTM) and Voice Cloning (VC). Each component
plays a crucial role in augmenting data for the keyword spotting
(KWS) and speaker identification (SID) processes according to
their specific requirements. For KWS, the NTM module gen-
erates homophones, synonyms and permutation of the target
keywords or phrases to facilitate mining difficult cases. Mean-
while, for the SID task, negative samples produced by this mod-
ule are utilized to improve the system’s capability in identifying
unknown speakers.

5.1. Rule-Based NTM

The rule-based NTM is employed to expand the negative exam-
ples for KWS systems using predefined rules. To find homo-
phones, we employ a pre-trained Grapheme-to-Phoneme (G2P)
model, transforming the subwords of training phrases and com-
mon words into phoneme sequences. We then calculate the pho-
netic distance between the subwords of the target and each word
in our lexicon. The top 25 words with the shortest phonetic
distances are selected to create phonetically similar alternatives
to the target subwords. For the synonyms process, we harness

a pre-trained FastText3 model to derive word embeddings and
determine the semantic similarity between the subwords of the
target and each lexicon word. Here too, we select the 25 most
semantically similar words to generate alternatives related to the
target subwords. These procedures employ a standard English
word dictionary4 containing approximately 10,000 entries.

The subsequent step involves substituting subwords in the
target phrase to generate variants that are phonetically or se-
mantically close to the original, thereby producing potentially
confusing phrases.

Additionally, the permutation process, which shuffles the
order of subwords in the target phrase, creates variations with
identical phonemes but arranged differently, introducing com-
plexity and enhancing the model’s robustness.

5.2. LLM-Based NTM

To enhance the variety of challenging cases further, we utilize
interactions with Generative Pre-trained Transformer (GPT)
models. This strategy, as depicted in Figure 5, generates hard
samples that closely mimic semantic or phonetic properties of
the target words or phrases. These samples are more aligned
with the natural language patterns encountered in everyday
communication.

5.3. Voice Cloning Process

In the KWS workflow, after applying NTM, we introduce a
zero-shot Voice Cloning (VC) module to create speech samples
that are independent of speaker identity. This is achieved for
each negative example by varying the speakers and speech rates.
Utilizing this approach, the M-UDKWS system constructs a
comprehensive dataset with over 170,000 negative examples.

For SID, our data augmentation concentrates on producing
a substantial number of negative or confusion samples to simu-
late unknown speakers, as outlined in Section 4.2. We generate
these samples using the VC module, with reference speakers
chosen at random from the LibriTTS dataset. It is ensured that
the voiceprints of these speakers do not overlap with those in
subsequent evaluations. This data supports the strengthening
of the SRPL process and facilitates the implementation of the
SRPL-CS algorithm.

We deploy the TSCM-TTS system5, a zero-shot voice
cloning model trained on the LibriTTS corpus for both KWS
and SID processes.

6. Experiments
In this section, we describe the experimental setup, includ-
ing the datasets, the evaluation metrics, the pre-trained models
used, and the implementation details of training and inference.

6.1. Datasets

• LibriPhrase: We constructed the Libriphrase training and
test datasets using LibriSpeech [46], following methodolo-
gies from [21, 22, 23, 24]. The training dataset was gen-
erated from train-clean-100/360, and the test dataset from
train-others-500. Libriphrase test dataset comprises two sub-
sets: Libriphrase Easy (LE) and Libriphrase Hard (LH).
Our model’s performance is evaluated on these subsets, fo-
cusing on binary classification accuracy.

3https://fasttext.cc
4https://github.com/cmusphinx/cmudict
5https://great-research.github.io/tsct-tts-demo
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Please help me come up with some words or phrases that
have the same meaning as "{I mean to}". | Keywords |

"I intend to", "I plan to", "I aim to", "I am
focused on", "I am resilved to", ...

NTM VC

VoiceClone

Help me use the speech synthesis model to clone
"{10}" speakers who will read aloud the same
phrase, each one will say "{I mean to}" and each
one will repeat "{5}" times, with different rates of
speech.  | Speakers | Keywords | Times |

ID001
I_mean_to_0~5.wav

ID002
I_mean_to_0~5.wav

ID010
I_mean_to_0~5.wav

...

I meant to, I plan to, mean to i, ...

I mean to

Eng. Dict

Figure 5: Data augmentation process with advanced tools

• Google Speech Commands: The Google Speech Com-
mands dataset [47], a prevalent corpus for keyword spotting
with 30 keywords, is employed for evaluation. We focus on
10 short command words, set up as a binary classification
task with query audio and support text, abbreviated as G. Ad-
ditionally, we adopt a ”one-vs-many” multi-class classifica-
tion setting, named G-Many, where 10 target keywords are
randomly selected, and the remaining 20 keywords serve as
unknown classes, following the configuration of [48].

• Qualcomm Keywords Dataset: This dataset, abbreviated as
Q, consisting of 4,270 utterances of four English keywords
spoken by 50 speakers, is ideal for evaluating both KWS
and SID tasks within our personalized user-defined keyword
spotting pipeline. It also serves to assess the performance of
our proposed open-set SID method in a household multi-class
classification context.

• Hey Snips: The Hey Snips dataset is a speaker-independent
collection of wake words with approximately 11K keyword
and 86.5K non-keyword utterances. We adhere to the setup
in [49] to evaluate one-word spotting or wake word detection
performance, measuring the error rate over a specified dura-
tion.

• AVSP-0: To challenge our open-set SID method in more
complex scenarios, we introduce the AVSP dataset, a multi-
speaker, text-independent collection. AVSP-0 is a unique ’in
the wild’ dataset, comprising cross-age speakers and gath-
ered from various online resources. Detailed information
about AVSP-0 is provided in Appendix A.2.

6.2. Metrics

6.2.1. For KWS Subtask Evaluation

For the KWS sub-task, we employ the Equal Error Rate (EER)
and the Area Under the Receiver Operating Characteristic
Curve (AUC) as principal metrics, as detailed in [21, 22].
For the Google Speech Command dataset, we further as-
sess multiclass classification performance using Acc(close) and
Acc(open), as per [48], where Acc(close) excludes unknown
class instances.

For the Qualcomm Keywords and Hey Snips datasets,
which simulate practical wake-up word detection scenarios, we
evaluate False Reject Rate (FRR) metrics at extremely low False
Alarm rates, specifically at 1 False Alarm per hour (FAH=1) and
0.5 False Alarm per hour (FAH=0.5), and also consider scenar-
ios with no False Alarms (FAH=0.05).

6.2.2. For SID Subtask Evaluation

The SID task follows the multi-class classification metrics pro-
cess described in [28]. AUC is employed as a threshold-
independent metric, plotting the true positive rate against the
false positive rate, indicating the likelihood that a positive ex-
ample is scored higher than a negative one. However, AUC
does not account for known class accuracy in open-set recogni-
tion. Hence, we adopt the Open Set Classification Rate (OSCR)
[50, 28] for evaluating open-set SID:

CCR(δ) =
|{x ∈ Dk

T | argmaxk P (k|x) = k̂ ∧ P (k̂|x) ≥ δ}|
|Dk

T |
,

(23)

FPR(δ) =
|{x | x ∈ DU ∧maxk P (k|x) ≥ δ}|

|DU |
, (24)



Here, δ is a threshold that requires thorough evaluation, and
OSCR is defined as the area under the curve of the Correct
Classification Rate (CCR) for known classes against the False
Positive Rate (FPR) for unknown data.

6.2.3. For PUKWS Pipeline Evaluation

For personalized keyword spotting pipeline assessment, we
consider metrics suitable for household personalized keyword
detection scenarios. We introduce Keyword Aware AUC (K-
AUC) and Keyword Aware Open-set Recognition Rate (K-
OSCR) to reflect accuracy in both KWS and open-set SID:

KAUC = FRRkws ∗AUCsid,

KOSCR = FRRkws ∗OSCRsid.
(25)

Given that FRRkws represents the False Reject Rate of the
KWS system at nearly no False Alarm Rate (FAH=0.05), it can
be inferred that all phrases passed to the SID system are indeed
the target keywords. Therefore, we denote the FRRkws is con-
sidered the initial accuracy loss of the KWS, compounded with
the subsequent stage metrics AUCsid and OSCRsid, to form
a composite metric for the entire PUKWS pipeline evaluation.

6.3. Training and Inference Details

6.3.1. Training Details

• Training M-UDKWS: We expand the Libriphrase dataset
using the data augmentation pipeline detailed in Section 5
and proceed to train the M-UDKWS system end-to-end. we
extract 80-dimensional features for the audio signals in the
query branch, which are then extracted into 128-dimensional
frame6-level audio embeddings after tiny conformer. In the
support branch, we encode the text into 128-dimensional
phoneme embeddings using G2P and 768-dimensional word
embeddings encoded by the text encoder DistilBERT, as well
as encode the template audio into 768-dimensional frame-
level audio embeddings using the WavLM module, respec-
tively. It is worth noting that all supported modules are fixed-
parameter. Subsequently, three lightweight mappers were
used to convert all inputs into a uniform 128-dimensional
space. The training process uses the Adam optimizer with
about 50k steps of training. Specific model parameters are
detailed in Appendix A.3.

• Few-shot Fine-tuning of M-UDKWS: To adapt M-UDKWS
for specific wake words on the Qualcomm and Hey Snips
datasets, we apply few-shot fine-tuning. This involves con-
structing a large number of challenging negative examples
for each target keyword using the data augmentation pipeline
from Section 5, alongside a small number of real-world key-
word utterances (e.g., 5, 10, and 50). The pre-trained M-
UDKWS model undergoes fine-tuning with the techniques
described in Section 3.1, utilizing the Adam optimizer at a
reduced learning rate over 5k steps.

• Few-shot Fine-tuning of SRPL for Open-set SID: For the
open-set SID system, we rapidly fine-tune using SRPL or
SRPL-CS for few-shot scenarios. In the enrollment phase,
5 to 15 speakers are designated as known speakers, with
20 utterances each for model tuning. When applying SRPL
without confusion samples, only known samples are used for
training. For SRPL with confusion samples, 1000 utterances
from unknown speakers are generated as negative samples
as detailed in Section 5.3 or gathered from unused part of the
Qualcomm Keywords dataset. The adaptation involves a 3-
layer MLP model, and linearly transforms to K-way speaker
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Figure 6: Detailed Inference Process of the PUKWS Pipelines.

outputs. The SRPL loss, as outlined in Section 4.1, is then
applied. SGD optimizer at a small learning rate is used to
only fine-tune the adapter for 1k steps.

6.3.2. Inference Details

The inference process of our system unfolds in two main stages.
During the enrollment phase, we enroll the target keywords
and template audio for the user. This step involves extracting
phoneme and text embeddings, as well as audio embeddings.
For the SRPL-based open-set SID system, this phase includes
quick fine-tuning of the speaker adapter using the known target
speakers’ template audio. In the subsequent testing phase, the
M-UDKWS system searches for keywords. The detection out-
put is the utterance-level probability score Putt, as depicted in
Figure 2. For the SRPL-based open-set SID system, we forgo
using cosine similarity [41] and instead compute the probabil-
ity score by measuring the logits of the test speaker embeddings
against the reciprocal points, resulting in the speaker identifica-
tion probability as defined in Equation (17).

Figure 6 illustrates the household PUKWS’s practical ap-
plication. The M-UDKWS system is always on, monitoring
the speech stream for keywords within a specified detection
window (e.g., 1 second for short words, 2 seconds for longer
phrases), and evaluating scores at 100ms intervals. The open-
set SID system activates only upon detection of a keyword. If
a target speaker is identified, the keyword and speaker identity
are simultaneously relayed to the next system level to facilitate
additional tasks for the AI agent.

7. Results
7.1. Comparative Evaluation of M-UDKWS

We compare the proposed M-UDKWS model with the SOTA in
Table 1. Triplet [51], Attention [52], and DONUT [53] use the
QbyA approach, and CMCD [21], EMKWS [23], CED [24],
and PhonMatchNet [22] are the recently proposed QbyT ap-
proach. AdaKWS [25] uses large-scale pre-training with fine-
tuning on the LibriPhrase training set, which has a large number
of parameters.

Evaluation results show that among all the methods without
confusing keyword generation, our method achieves higher area
under the ROC curve (AUC) and lower equal error rate (EER),
which is better than all the QbyA and QbyT methods. Com-



Method # Params EER(%) ↓ AUC(%) ↑

G Q LE LH G Q LE LH

w/o confusable keyword generation

Triplet [51] - 35.60 38.72 32.75 44.36 71.48 66.44 63.53 54.88
Attention [52] - 14.75 49.13 28.74 41.95 92.09 50.13 78.74 62.65
DONUT [53] - 31.65 18.23 14.67 35.22 66.36 89.69 92.29 69.58
CMCD [21] 0.65M 27.25 12.15 8.42 32.90 81.06 94.51 96.70 73.5

EMKWS [23] 3.70M - - 7.36 23.36 - - 97.83 84.21
CED [24] 3.60M 14.05 - 0.80 18.40 93.16 - 99.94 89.20

PhonMatchNet [22] 0.65M 6.77 4.75 2.80 18.82 98.11 98.90 99.29 88.52
M-UDKWS (ours) 3.50M 5.17 3.05 0.52 13.63 98.93 99.29 99.97 93.06

M-UDKWS-TA† (ours) 3.90M 4.85 1.52 0.47 13.03 98.96 99.89 99.98 93.73

w/ confusable keyword generation

CED [24] 3.60M 13.45 - 1.70 14.40 93.94 - 99.84 92.70
AdaKWS-Tiny [25] 15M - - 1.61 13.47 - - 99.80 93.75
AdaKWS-Small [25] 109M - - 1.21 11.48 - - 99.82 95.09
M-UDKWS (ours) 3.50M 5.52 2.31 0.78 10.57 98.69 99.71 99.94 95.37

M-UDKWS-TA† (ours) 3.90M 4.86 2.15 0.69 9.55 98.97 99.74 99.95 96.08
Table 1: Experimental results of M-UDKWS methods in various datasets. G: Google Commands V1, Q: Qualcomm Keyword Speech
dataset, LE: LibriPhrase-Easy, LH: LibriPhrase-Hard. (†): our model with enrollment audio.

Method Open Close Open Close

AUC(%)↑ OSCR(%)↑ ACC(%)↑ AUC(%)↑ OSCR(%)↑ ACC(%)↑

5Way 10Way

WavLM X-vector [41] 84.09 83.61 99.54 83.81 81.49 96.06

+ Softmax [32] 71.33 70.95 99.07 66.46 66.91 98.91
+ ProtoType [33, 34] 71.54 71.39 99.54 88.87 88.45 98.91
+ OpenFEAT [39] 71.54 71.39 99.54 88.87 88.45 98.91
+ SRPL 81.12 80.95 99.53 89.53 89.16 98.47

+ SRPL-CS(F) 92.51 92.48 99.90 92.06 91.25 98.69
+ SRPL-CS(R) 95.73 94.25 99.21 95.40 94.26 98.81

Table 2: Experimental results of open-set SID tasks on Qualcomm dataset.

pared with PhonMatchNet, M-UDKWS improves the EER of
LE and LH by 2.28% and 5.19%, respectively. M-UDKWS-TA
with support audio achieves further improvement in all metrics.

M-UDKWS with confusable keyword generation in the sys-
tem has a relative improvement of 3.06% and 2.31% on EER
and AUC of LH. M-UDKWS-TA with template audio as sup-
port audio further improves on the EER and AUC of LH by
9.55% and 96.08% respectively, significantly outperforming all
methods. The performance of M-UDKWS-TA with a parame-
ter count of 3.9M is even better than that of AdaKWS with a
parameter count of 109M, which shows the excellence of our
approach.

7.2. Comparative Evaluation of SRPL

Table 2 presents the comparative results of our SRPL system
against various baseline methodologies. The WavLM X-vector
system, which utilizes cosine similarity for speaker identifica-
tion, serves as a fundamental baseline. This system simplifies
the SID task to a ”one-vs-one” binary classification problem
without specialized optimization for multi-class scenarios. It
computes the probability of each target speaker based on the

cosine similarity between the test embeddings and the mean of
the enrollments.

Advanced methods, such as Softmax fine-tuning [32], Pro-
totype learning [33, 34], and OpenFEAT learning [39], are tai-
lored for known speakers within specific household settings.
They may or may not include unknown speaker detection and
use logits for scoring. Our SRPL system outperforms both the
Prototype and OpenFEAT methods, as well as the WavLM X-
vector baseline. This superiority is evident in the evaluation
metrics of AUC and OSCR, where SRPL demonstrates robust
performance for both 5-way and 10-way classification tasks.

Incorporating real confusion samples during training,
the SRPL-CS(R) achieves remarkably high OSCR scores of
94.25% and 94.26% in 5-way and 10-way evaluations, respec-
tively, marking significant advancements over the baselines.
Similar efficacy is observed with synthetic confusion samples
created via the zero-shot VC system detailed in Section 5, where
SRPL-CS(F) also attains outstanding results. Additionally, the
auxiliary close-set metric ACC, which focuses solely on the
recognition accuracy of close-set known speakers, indicates that
the SRPL-CS system maintain perfect close-set performance.



Method K-
AUC%↑

K-
OSCR%↑KWS SID

Baseline System

PhonMatchNet [22] WavLM X-vector [41] 57.6 58.9
PhonMatchNet + Softmax [32] 51.2 50.0
PhonMatchNet + OpenFEAT [39] 51.2 50.3

Ours

M-UDKWS-ZS + SRPL-CS(R) 82.0 82.0
M-UDKWS-FS + SRPL-CS(R) 92.1 91.2

M-UDKWS-TA-FS + SRPL-CS(R) 93.5 93.7

Table 3: Overall Process for the PUKWS Piplines Evaluations.
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Figure 7: Performance Analysis via Keyword Similarity on Lib-
riphrase Hard (LH) Dataset. Models marked with an asterisk
(*) are enhanced with confusable keyword generation.

7.3. Comparative Performance Evaluation of PUKWS
Pipeline Systems

Table 3 demostrate the comparative performance of our com-
plete PUKWS pipeline against established baselines, particu-
larly highlighting the state-of-the-art User-defined KWS sys-
tem, PhonMatchNet, coupled with the WavLM X-vector and
optimized open-set SID systems for this task. The efficacy of
our integrated PUKWS pipeline, which combines M-UDKWS
with SRPL-CS, is evident when measured against the baselines
using the K-AUC and K-OSCR metrics. Notably, on the Qual-
comm Keywords dataset, our M-UDKWS-TA with SRPL-CS
method achieves a K-OSCR of 93.7%, markedly outperforming
the baseline systems by 34.8%.

7.4. Supplementary Investigations and Analyses

In this section, we delve into additional explorations and analy-
ses that supplement our core findings.

7.4.1. Performance Analysis via Keyword Similarity

We investigated the impact of hard cases on model performance
by utilizing the normalized Levenshtein distance [22] to quan-
tify the similarity of hard negative keywords at the phoneme
level, where closer distances signify greater difficulty in differ-
entiation. We computed the Mean Square Error (MSE) between
the hard negative samples’ model predictions and the true labels

Method # of supports G-Many

Acc(close)↑ Acc(open)↑

QbyA [48] 1 69.0±1.67 66.0±1.03
5 90.5±0.53 80.6±0.44

M-UDKWS (ours)
0 93.9±0.15 88.2±0.31
1 95.4±0.14 90.7±0.18
5 95.9+0.14 90.8±0.18

Table 4: The zero-shot performance of M-UDKWS in multi-
class classification evaluation ”G-Many”.

Method Hey Snips Q

FRR@FAH=0.5↓ @FAH=1↓ @FAH=0.05↓

C-RIL [54] 3.53 2.82 -
WeKws* [49] - 0.87 -

PhonMatchNet [22] - - 29.48

M-UDKWS-ZS 17.12 12.09 12.82
M-UDKWS-FS 3.40 2.33 3.20

M-UDKWS-TA-FS - - 0.64

Table 5: M-UDKWS for Customizing Wake Word Performance
on Hey Snips and Qualcomm.

(which are zeros), constraining the MSE values within the range
of 0 to 1.

Figure 7 illustrates the evaluation results for Libriphrase
Hard (LH) cases. It reveals that the model’s accuracy dimin-
ishes with the increasing difficulty of cases. In comparison,
the baseline model exhibits poor performance, particularly with
confusable words that are harder to distinguish. By incorpo-
rating confusable keywords for auxiliary training, our model
demonstrates a marked improvement in detecting hard cases.
Furthermore, the model that leverages both audio and text in-
puts for support consistently outperforms the one relying solely
on text. This enhancement is primarily attributed to the audio
input’s role in diminishing the disparity between text and audio
spaces.

7.4.2. The Zero-Shot Performance of M-UDKWS in Multi-
Class Classification Tasks

We assessed the performance of M-UDKWS in multi-class clas-
sification tasks using the G-Many dataset. This evaluation
was particularly aimed at comparing M-UDKWS’s effective-
ness with the QbyA system [48] in a multi-classification con-
text. Table 4 illustrates these findings. Notably, the QbyA sys-
tem exhibits suboptimal performance with a limited number of
enrollment audios. In contrast, M-UDKWS shows superior per-
formance with just text input as support and continues to im-
prove as users provide more enrollment audio.

7.4.3. M-UDKWS for customized wake word wake-up tasks

We evaluated our M-UDKWS method on the Hey Snips and
Qualcomm datasets, with results summarized in Table 5. The
initial zero-shot performance of M-UDKWS was not ideal when
evaluated against this metric. Notably, all baseline models com-
pared, including C-RIL [54] and WeKws [49], were trained with
a substantial amount of data specific to these keywords (”full-
shot”), which should be considered as a performance bench-
mark for zero-shot systems.
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Method EER(%) ↓ AUC(%)↑

LE LH LE LH

M-UDKWS-TA 0.69 9.55 99.95 96.08
w/o confusable keywords 0.47 13.03 99.98 93.73

w/o support audio 0.52 13.63 99.97 93.06
w/o auxilary loss 0.63 15.29 99.97 91.91

Table 6: Ablation studies of M-UDKWS.

Consequently, we applied the 5-shot fine-tuning method de-
scribed in Section 6, leading to significant improvements in
M-UDKWS’s performance, to the point of being comparable
with the baseline keyword-specific systems. The performance
further enhanced when enrolled audio was utilized. Addition-
ally, fine-tuning experiments on the Hey Snips dataset with an
increasing number of fine-tuning audios indicated that system
performance improved proportionally, peaking with a corpus of
50-shots, as detailed in Figure 8.

7.4.4. Visualization of attention map of the text support branch

We analyzed the attention map of our Text-Audio Attention
(TAA) model, as shown in Figure 9. Our observations revealed
that the attention map tends to exhibit significant monotonic-
ity when aligned with the target word. This pattern suggests
that the TAA module effectively aligns speech segments with
the target word, highlighting areas of significant relevance at
specific positions. This is observable both at the word level,
where attention relates to Language Model (LM) features Es

t ,
and at the phoneme level, with attention guided by Grapheme-
to-Phoneme (G2P) features Es

p, as illustrated in Figure 2. No-
tably, individual subwords elicit distinct responses.

For confusable negative samples, matched subwords or
phonemes exhibit high levels of brightness on the attention map,
indicating active engagement, whereas non-matching segments
display lower brightness levels. The model prediction score in-
versely correlates with the monotonicity of the detection: lower
scores are associated with non-monotonic detections, whereas
perfect monotonic matches result in higher scores.
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Score: 0.1997 -> Non-match

Hi ga
lax

y

Hi

ga
lax
y

HH

AY
1

L

AH
0

K

IY
0

G

AE
1

S

Hi

gre
at

HH

AY
1

EY
1

T

G
R

Figure 9: Overview of the data compos.

7.4.5. Ablation studies of M-UDKWS

Table 6 presents our ablation study results, indicating that the
integration of confusable keyword generation, the support au-
dio branch, and auxiliary loss all contribute to the enhanced
performance of our model. Specifically, the inclusion of auxil-
iary loss and the support audio branch yields performance gains
across both Libriphrase Easy (LE) and Libriphrase Hard (LH)
datasets. While the generation of confusable keywords slightly
reduces performance on LE, it notably enhances the model’s ef-
fectiveness on LH. This disparity suggests a trade-off, where
enhancing the model’s ability to distinguish hard cases may im-
pact performance on simpler tasks.

7.4.6. Auxiliary Studies for SRPL for Open-set SID

Figure 10 illustrates the speaker manifold embeddings. Upon
examining the open-set distributions of these embeddings, it
becomes evident that for the WavLM baseline methods, the
embedding spaces are largely indistinguishable from the un-
knowns. The baseline model without open-set SID rapid op-
timization exhibiting reduced speaker discriminability. Con-
versely, SRPL rapid training based on WavLM Xvector demon-
strates superior performance in discriminating speaker embed-
dings and effectively segregating and clustering unknowns into
separate positions, while the embedding of the known target
speakers are better clustered. This highlights the efficacy of the
proposed open-set learning objective.

Table 7 further assesses the SRPL approach using the
AVSP-0 dataset—a text-independent, ”in the wild” speaker
dataset featuring cross-age variability, as detailed in Section
A.2. The results underscore the robustness of SRPL methods,
showcasing their superior performance across baselines in com-
plex and challenging speaker identification scenarios.



Figure 10: TSNE Visualization of the embedding for open-set
SID optimization.

8. Conclusions
In conclusion, this paper introduces a personalized user-defined
keyword spotting (PUKWS) pipeline optimized for household
environments. We propose a multi-modal user-defined keyword
spotting (M-UDKWS) approach and a speaker reciprocal points
learning (SRPL) algorithm for open-set speaker identification.
By utilizing data augmentation strategies with advanced tools,
we achieve a significant performance improvement of PUKWS,
which is 34.8% compared to the existing baseline. Our research
contribution lies in the development of an innovative pipeline
that combines the functionality of user-defined keyword spot-
ting and open-set speaker identification, providing significant
improvements to the utility and user experience of smart house-
hold environments. In the future, we plan to further extend our
approach, including testing it in more real scenarios and ex-
ploring related research such as lightweight deployment of the
model to further improve the performance and robustness of the
PUKWS.
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Figure 11: Overview of M-UDKWS Data Composition and
Batching Scheme.

A. Appendices
A.1. M-UDKWS Data Composition and Batching Scheme

The M-UDKWS data composition and batch processing scheme
is summarized in Figure 11. In the training phase, we cate-
gorized the Libriphrase into common and uncommon samples
based on the criterion of whether the number of audios within a
category is greater than 20. Meanwhile, with the data enhance-
ment scheme shown in Figure 5, we synthesized a large number
of samples for the common samples, totaling about 27K key-
word categories. The number of uncommon samples is about
5M keyword categories, while the synthesized samples gener-
ated by speech synthesis are about 170K keyword categories.
This comprehensive data processing and enhancement strategy
helps to improve the performance of the model in various sce-
narios and ensures its generalization ability for different cate-
gories and samples.

The batching scheme for M-UDKWS is shown in Figure
11(b), where we construct a mini-batch for the target word in
each batch, and the samples are randomly sampled from the
query table in a 1:1 ratio of positive and negative samples. The
query table describes the composition of our positive and neg-
ative samples, which mainly includes positive samples, weak
positive samples, random negatives, and hard negatives. Where
weak positive samples are phrases obtained from the dataset that
contain sequences of positive samples, and hard negatives are
obtained from the data augmentation pipeline shown in Figure
5 that includes hard cases such as synonyms, homophones, etc.

A.2. AVSP0 Dataset

AVSP is a cross-age speaker dataset that we collected using the
data collection pipeline shown in Figure 12, containing speech
data from nearly 300 speakers with an average voice age span

Shot Detection

POI videos

Person Tracking

Face Recognition &
Active Speaker Detection

Figure 12: The AVSP dataset collection pipeline.

of 8 years. In this paper, we select 50 speakers from AVSP,
with vast amount of audio data for each speaker, to simulate the
speaker identification task in a home environment, which we
name AVSP0. The data collection pipeline is briefly described
below:

• STEP1: Candidate list of POIs. AVSP data aims to col-
lect massive audiovisual data of target speakers with a long
age span for aging and personalization research. We selected
about 300 famous American TV series actors6, YouTube7and
Bilibili8 video bloggers as POIs through manual screening.

• STEP2: Shot Detection. In order to avoid scene switching
from affecting the identification of the speaker, we use the
ffmpeg tool9 to detect scene changes and crop the video into
multiple clips.

• STEP3: Person Tracking. For each shot, we use YoloV810

for person tracking, splitting each tracked ID into separate
video sub-segments, which is faster and more efficient than
conventional face detection and tracking.

• STEP4: Face Recognition and Active Speaker Detection.
We use face recognition11 and active speaker detection [55]
to determine the correspondence between the audio track and
the sub-video based on the segmented sub-video clips and the
corresponding audio track.

6https://www.imdb.com
7https://www.youtube.com
8https://www.bilibili.com
9https://ffmpeg.org

10https://docs.ultralytics.com
11https://github.com/deepinsight/insightface



Hyper-parameter Params

M-UDKWS

Encoder Layers 6
Conformer Attention Heads 4 2.9M

G2P 0.83M

DistilBERT 66M
Feature Extractor

WavLM 94.7M

Encoder Layers 2
Text-Audio Attention Attention Heads 4 0.4M

Encoder Layers 2Pattern Extractor
Text-Audio Attention Attention Heads 4 0.4M

Pattern Discriminator GRU & Linear 0.2M

Total Number of M-UDKWS Parameters 3.9M

Open-set SID

Feature Extractor WavLM 94.7M

Feature Adaptor Linear 0.3M

Table 8: Model configurations

A.3. Model Configurations

We list the hyper-parameters of M-UDKWS and open-set SID
in Table 8. We utilize pre-trained G2P, DistilBERT, and WavLM
for M-UDKWS. These models are used for offline extraction of
enrolled keyword features, which are not reused during infer-
ence, and thus do not re-consume arithmetic, which needs only
a small amount of memory. For open-set SID, this module is
not always on. Generally, it needs to be woken up through M-
UDKWS detection and then activate the open-set SID module.
We use the WavLM module as the open-set SID feature extrac-
tion frontend. When finetuning, only the added Adapter module
is training.
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