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Abstract—Current state-of-the-art text-to-speech (TTS) sys-
tems predominantly utilize denoising-based acoustic decoders
with language models (LLMs) or with non-autoregressive front-
ends, known for their superior performance in generating high-
fidelity spectrum. In this study, we introduce an efficient TTS
system that incorporates Consistency Flow Matching denoising
training. This training approach significantly enhances the train-
ing efficiency and operational performance of denoising-based
acoustic decoders in existing TTS or voice conversion systems,
with no additional cost in the training process—a free lunch.
To efficiently compare with other denoising strategies, we align
with the latest advancements in the implementation of non-
autoregressive-based TTS systems and build an efficient DiT-
based TTS architecture. Our comprehensive evaluations against
various denoising-based methods affirm the efficiency of our
proposed system1.

Index Terms—component, formatting, style, styling, insert.

I. INTRODUCTION

Text-to-speech synthesis (TTS) aims to generate high-
quality speech from text inputs, ensuring clarity and intelli-
gibility. With advancements in deep learning, TTS research
has seen significant improvements in recent years.

Recent advances in TTS systems can be categorized into
LLM-based autoregressive models and diffusion-based non-
autoregressive models. Leveraging the in-context learning ca-
pabilities of large language models (LLMs), several studies
have applied LLMs to model discrete audio tokens from neural
codecs [14], [22]–[24]. These approaches have demonstrated
remarkable performance in zero-shot TTS, capable of cloning
timbre and prosody with extremely high audio quality when
combined with neural codec models.

A major component in TTS systems combining LLMs
or other non-autoregressive (NAR) content encoders is the
denoising acoustic decoder, which commonly employs denois-
ing probabilistic models (DDPM) [10], flow-matching-based
models [11], Schrödinger bridge methods [12], or rectified
flow-based methods [30]. Flow-matching-based methods have
proven to be highly efficient in TTS systems, benefiting from
an effective large language model front-end.
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Optimal Transport Conditional Flow Matching (OT-CFM)
[25] can be considered a specific type of flow matching with
a defined trajectory and is widely used in current state-of-
the-art TTS systems [20]. It also combines effectively with
LLM-based content encoders, such as in CosyVoice [30],
as well as in zero-shot voice conversion systems like Seed-
VC [31]. However, OT-CFM is not an optimal and efficient
training method and may suffer from cumulative errors, as
analyzed in [2]. We propose to optimize the flow trajectory
in a more flexible and effective manner by enforcing the self-
consistency property in the flow velocity and flow endpoints
during the training of the acoustic decoder. This approach
ultimately results in faster generation with fewer sampling
steps in inference, improved generation quality, and better
training effectiveness. Unlike ReFlow [30], the Consist-FM
decoder does not require additional sample generation steps or
increased disk usage, and even better efficiency [2]—a free-
lunch method based on existing architectures.

Our contributions in this work are as follows:
• We introduce StableTTS, a TTS system that utilizes

Consistency Flow Matching to optimize the training effi-
ciency of the denoising acoustic decoder, thereby achiev-
ing optimal training and inference sampling efficiency.

• We have enhanced the existing non-autoregressive TTS
architecture by integrating a diffusion transformer for
both the content encoder and acoustic decoder to prepare
an effective and efficient architecture for comparison with
other denoising methods. We believe such findings can be
easily adapted to existing LLM-based content front-end
TTS architectures.

II. RELATED WORK

Modern autoregressive TTS models treat TTS as a lan-
guage modeling task. Vall-E [7] utilizes neural codec codes
as intermediate representations instead of mel-spectrograms.
BASETTS [13] deploys a 1-billion-parameter autoregressive
Transformer model and confirms the capabilities of large TTS
models. CosyVoice [14] introduces a novel codec-based voice
synthesizer that combines an LLM for text-to-token generation
and a conditional flow-matching model for token-to-speech
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synthesis. MELL-E [15] proposes a continuous-valued token-
based language modeling approach that autoregressively gen-
erates continuous mel-spectrogram frames directly from text.

Denoising models for acoustic decoders have emerged
as a powerful approach in both autoregressive and non-
autoregressive TTS models. They provide robust frameworks
for learning complex high-dimensional data distributions (Mel
spectrum or audio latents) through continuous-time diffusion
processes. Diff-TTS [16] was the first to apply diffusion
probabilistic models (DPMs) for acoustic modeling. Grad-
TTS [10] introduces a score-based decoder for generating
mel-spectrograms, showcasing the potential of diffusion mod-
els in TTS. To enhance generation speed, Fast Grad-TTS
[17] explores specific sampling methods to accelerate infer-
ence. CoMoSpeech [18] introduces a consistency model-based
approach, enabling high-quality audio generation in just a
single diffusion sampling step. LightGrad [19] incorporates
a lightweight U-Net diffusion decoder with a training-free
fast sampling technique, reducing both model parameters and
inference latency.

Flow-matching techniques have also gained attention in the
TTS domain. Matcha-TTS [1] and P-Flow [21] employ an
ODE-based decoder that generates high-quality output in fewer
synthesis steps. VoiceFlow [1] uses rectified flow resampling
techniques for more efficient synthesis.

In recent flow-matching methods for learning flows, it is
often necessary to approximate the transformation between
two distributions. However, this process is computationally
intensive and introduces additional approximation errors, as
seen in rectified flow [35] and consistency models [36]. To
overcome these challenges, Consistency Flow Matching [2]
learns a multisegment flow with constraints on both velocity
and endpoints.

III. PRELIMINARY ON THE OPTIMAL-TRANSPORT
FLOW-MATCHING BASED TTS SYSTEM

The flow-matching based method is used as the acoustic
decoder for an encoder-decoder-based zero-shot TTS system.
Our overall architecture for comparing denosing decoders is
demonstrated in Fig. 1. We use a Diffusion Transformer [26] as
the text-encoder as the content generation mainly for efficient
and fair comparison.

Let x1 denote an observation in the mel spectrum, sampled
from an unknown data distribution q(x). A probability density
path is a time-dependent probability density function pt(x).
One way to generate samples from the data distribution q(x)
is to construct a probability density path pt(x), to transform
noise x0 ∼ p0(x) = N(0, I), the prior normal distribution,
such that p1(x) approximates the data distribution q(x). Flow
matching first defines a vector field vt, which generates the
flow ϕt through the ODE:

d

dt
ϕt(x) = vt(ϕt(x));ϕ0(x) = x. (1)

We can sample from the approximated data distribution p1(x)
by solving the ODE initial value problem in Eq. (1)

Suppose there exists a known vector field ut that generates
a probability path pt. The flow matching loss is defined as:

LFM (θ) = Et,pt(x)||u(x, t)− v(x, t; θ)||2 (2)

where v(x, t; θ) is a neural network with parameters θ. To
make training tractable by training with x0 and x1, conditional
flow matching with optimal transport (OT-CFM) considers:

LOTCFM (θ) = Et,q(x1),p0(x0)||u
OT
t (x|x0, x1)− vt(x|µ; θ)||2

(3)
where x is sampled from:

x ∼ N [(1− t)x0 + tx1, σ] (4)

uOT
t (x|x0, x1) = x1 − x0 (5)

The neural network for estimating the vector field is condi-
tioned on the content sequence embeddings µ, as in [11].

IV. CONSISTENCY FLOW MATCHING FOR DENOISING
ACOUSTIC MODELING

A. Consistency Flow Matching for Acoustic Decoding

In this paper, we propose using the consistency flow match-
ing [2] for the denoising acoustic model. The core of the
consistency training contains two constraints. One is to directly
constrain the velocity vector field to be consistent in the
transport in each training segment. The second constraint
ensures that, starting from an arbitrary time t with data point
xt, and moving in the direction of the current velocity for a
duration of 1− t, the resulting ending point will be consistent.
We omit the notations for conditions on µ and θ, and define
the method:

LconsistFM (θ) = Et(EndConsist+ V eloConsist) (6)

EndConsist = ∥f(xt)− f(xt+∆t)∥2 (7)

V eloConsist = ∥v(xt)− v(xt+∆t)∥2 (8)
f(xt) = xt + (1− t)v(xt) (9)

xt = (1− t)x0 + tx1 (10)

For samples x1 ∼ q(x) and x0 ∼ p0(x), equation (6)
demonstrates the optimization loss for training the consistency
flow matching based denoising acoustic model. ∆t denotes a
time interval which is very small. The training process consists
of matching the endpoints and velocity at both x and xt+∆t.

B. Multi-segment Consistency Flow Matching and Initial Pre-
training

To further enhance the transfer flexibility and wish to better
matching the NFEs in inference sampling, we train Consist-
FM with multi-segment strategy. Additionally, we perform
two-stage training for this multi-segment Consist-FM [2].

In the first initial pretraining stage, for samples x1 ∼ q(x)
and x0 ∼ p0(x), t ∼ Uniform(0, 1). We define K segments
and linear sampling K endpoints (x0, x1/K , ..., xk/K , ..., x1).
The initial training stage uses a velocity-consistent flow match-
ing, which is similar to OT-CFM:

LConsistInit(θ) = Ek,t||uinit(xt)− v(xt)||2 (11)
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for those t ∈ [(k − 1)/K, k/K] and xt ∈ [x(k−1)/K , xk/K ],

uinit(xt) = (xk/K − xt)/(k/T − t). (12)

In the second stage for consistency flow matching training,
we use multi-segment consistency flow matching loss. Simi-
larly to Eq. (6), for those samples t ∈ [(k − 1)/K, k/K] and
xt ∈ [x(k−1)/K , xk/K ],

LConsistFMK(θ) = Et,k(EndConsistk + V eloConsistk)
(13)

EndConsistk = ∥fk(xt)− fk(xt+∆t)∥2 (14)

V eloConsistk = ∥vk(xt)− vk(xt+∆t)∥2 (15)
fk(xt) = xt + (k/K − t)vk(xt) (16)

Here, fk and vk are the endpoint estimator and velocity
estimator for segment k. An conceptual drawing in Fig. 2.

C. Denoising Acoustic Decoder on Efficient TTS architecture

Our evaluation backbone architecture for StableTTS con-
sists of a speaker encoder, a duration predictor, a text encoder,
a denoising- based acoustic decoder, and a Mel vocoder
[32]. The text encoder and flow-matching decoder are entirely
composed of diffusion transformer blocks. After the reference
audio ymel passes through the style encoder [27], it generates
a global feature vector g related to the speaker’s identity and
style. To implementing zero-shot TTS, we inject the speaker
information g into the model, g is processed through MLP
layer to obtain γ and β. These are then used as scaling
and shifting parameters to inject the style information into
the transformer in the form of adaptive layer normalization.
A FiLM layer [28] is inserted before each of the diffusion
transformer block in the acoustic decoder to condition the
timestep information. These implementation is similar with the
original DiT [34]. The Snake activation function is used in the
feed-forward network in the FFN layer. We concat noise and
content embeddings as input to the denosing acousctic decoder.
We found that the training process remains smooth when we
shift from OT-CFM to ConsistFM. The implementation of our
architecture and the denoising decoder can be found on the
project website.

V. EXPERIMENTS

A. Dataset and experimental setting

We train StableTTS and the baseline systems fairly on the
LibriTTS multi-speaker TTS corpus, training all models for
300 epochs. Testing is conducted on the LibriTTS dataset
to evaluate the synthesis quality using 10 speakers for audio
fidelity and speaker similarity assessments. For objective eval-
uations, we use a pretrained speaker verification model [33].
We compute the Speaker Encoder Cosine Similarity (SECS)



TABLE I
COMPARING DENOISING ACOUSTIC DECODER BASED ON THE SAME ARCHITECTURE

Model MCD↓ SECS↑ DNSMOS↑ Denoising Method NFE↓ RTF(CPU)↓
Ground Truth 0.00 0.86 3.82 DDPM - -

GradTTS+ [10] 8.49 0.72 3.47 DDPM 1000 2.20
MachaTTS+ [11] 7.21 0.81 3.80 OT-CFM 35 0.47

Reflow+ [3] 9.61 0.53 2.23 Reflow 35 0.47
StableTTS 7.18 0.82 3.85 ConsistFM 35 0.47

GradTTS+ [10] 9.81 0.60 2.65 DDPM 10 0.15
MachaTTS+ [11] 7.47 0.79 3.79 OT-CFM 10 0.10

StableTTS 7.32 0.82 3.88 ConsistFM 10 0.10
MachaTTS+ [11] 8.10 0.77 3.76 OT-CFM 6 0.08

StableTTS 7.85 0.77 3.80 ConsistFM 6 0.08

TABLE II
INFERENCE COST EVALUATION FOR STABLETTS WITH DENOISING

ACOUSTIC MODEL-BASED SYSTEMS

Model Stage NFE↓ MCD↓ SECS↑ DNSMOS↑
Ground Truth - - 0.00 0.86 3.82

StableTTS-6Seg Init 10 7.38 0.79 3.85
StableTTS-6Seg Consist 10 7.32 0.82 3.88
StableTTS-4Seg Init 10 7.45 0.80 3.80
StableTTS-4Seg Consist 10 7.38 0.81 3.82
StableTTS-2Seg Init 10 7.44 0.80 3.81
StableTTS-2Seg Consist 10 7.40 0.81 3.87

by comparing speaker embeddings from both synthesized and
ground-truth speech samples. We measure the Mel-cepstral
Distortion (MCD) to gauge structural disparities. To avoid
subjective bias, we follow recent research using DNSMOS
[29] to evaluate the audio P808-MOS objective score for audio
quality assessment. ConsistFM converges as easily as OT-CFM
in our experiments, with no degradation in training speed.
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Fig. 3. ConsistFM compare with OT-CFM at different sampling steps (NFEs)

B. Results

We evaluated the proposed systems alongside several state-
of-the-art denoising decoders for TTS systems, as shown in

Table I. GradTTS+ and MatchaTTS+ are widely used methods
with diffusion denoising probabilistic models and OT-CFM,
and we adapt them to our backbone for a fair comparison.
StableTTS with ConsistFM outperforms on all metrics with
very low NFEs, as well as at normal operational NFEs. With
NFE equal to 6 and RTF at 0.08, ConsistFM can still generate
better quality audio. The ReFlow-based method [30] does not
work properly with our backbone, and it requires resampling
and massive storage for features, making it not as concise as
ConsistFM.

Further comparisons of systems using the initial OT-CFM
strategy and second-stage ConsistFM training are shown in
Table II. StableTTS generally performs better in the second-
stage training with consistency flow matching, demonstrating
the effectiveness of multi-stage training. We also compare
different segmentation settings. Performance is generally better
when using a segment length equal to 6. Moreover, we com-
pare the consistency flow matching acoustic decoder with the
optimal-transport flow matching-based decoder with different
NFEs in Fig.3, showing that the proposed ConsistFM strategy
generally performs better for all NFEs.

VI. CONCLUSION

In this paper, we introduced StableTTS, an efficient text-
to-speech (TTS) system that incorporates Consistency Flow
Matching denoising training—a ”free lunch” training strategy
on a highly efficient backbone. By aligning with the latest
advancements in non-autoregressive TTS systems, we con-
structed an efficient DiT-based TTS architecture to effectively
compare our method with other denoising strategies, including
DDPM, OT-CFM, and others. The Consistency Flow Matching
training significantly enhances the performance and efficiency
of denoising-based acoustic decoders, improving both train-
ing efficiency and sampling efficiency during inference. Our
comprehensive evaluations against various denoising-based
methods affirm the effectiveness of our proposed system in
boosting denoising decoder performance and achieving faster
inference times. Future work will focus on scaling our method
to larger datasets and integrating it with existing front-end
LLMs based architectures to further improve performance in
content and prosody modeling.
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