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Abstract 

In the era of advanced text-to-speech (TTS) systems capable of generating high-fidelity, human-like speech by refer-
ring a reference speech, voice cloning (VC), or zero-shot TTS (ZS-TTS), stands out as an important subtask. A primary 
challenge in VC is maintaining speech quality and speaker similarity with limited reference data for a specific speaker. 
However, existing VC systems often rely on naive combinations of embedded speaker vectors for speaker control, 
which compromises the capture of speaking style, voice print, and semantic accuracy. To overcome this, we intro-
duce the Two-branch Speaker Control Module (TSCM), a novel and highly adaptable voice cloning module designed 
to precisely processing speaker or style control for a target speaker. Our method uses an advanced fusion of local-
level features from a Gated Convolutional Network (GCN) and utterance-level features from a gated recurrent unit 
(GRU) to enhance speaker control. We demonstrate the effectiveness of TSCM by integrating it into advanced TTS 
systems like FastSpeech 2 and VITS architectures, significantly optimizing their performance. Experimental results 
show that TSCM enables accurate voice cloning for a target speaker with minimal data through both zero-shot 
or few-shot fine-tuning of pretrained TTS models. Furthermore, our TSCM-based VITS (TSCM-VITS) showcases supe-
rior performance in zero-shot scenarios compared to existing state-of-the-art VC systems, even with basic dataset 
configurations. Our method’s superiority is validated through comprehensive subjective and objective evaluations. 
A demonstration of our system is available at https://​great-​resea​rch.​github.​io/​tsct-​tts-​demo/, providing practical 
insights into its application and effectiveness.
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1  Introduction
Text-to-speech (TTS) technology, pivotal in human-com-
puter interaction, aims to generate human-like speech 
from text and finds extensive application across various 
domains. Traditionally, TTS systems necessitate substan-
tial training data from target speakers, limiting their flex-
ibility and applicability in low-resource scenarios [1, 2]. 
Recent advancements have shifted focus towards voice 
cloning (VC) or zero-shot TTS (ZS-TTS) [3–5], which 

enables synthesizing speech for any speaker with mini-
mal data, enhancing the system’s adaptability for custom 
voice generation. This capability is especially beneficial 
for creating personalized media content, custom chat-
bots, and enhancing multimodal interactions between 
humans and computers, including interactions with large 
language models (LLMs). Despite strides towards artifi-
cial general intelligence (AGI) with advancements like 
GPT-4 showcasing zero-shot generalization in text pro-
cessing, the demand for specialized models tailored to 
excel in distinct tasks such as voice cloning in TTS syn-
thesis continues to grow, underscoring the importance of 
dedicated expert models for achieving high-quality, reli-
able performance [6].

Voice cloning using deep learning was initially pro-
posed in the work of extending the Deep Voice 3 model 
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[3, 7] for creating personalized speech interfaces. Subse-
quently, [8] employed Tacotron 2 [9] alongside a speaker 
encoder for adapting to new speakers. More recent 
efforts have focused on capturing the voice print of the 
target speaker directly from audio samples, eliminat-
ing the need for corresponding transcripts and labels 
[10–12]. These TTS systems go beyond mere text input; 
they are designed to synthesize speech conditioned on 
a latent vector extracted from the speech of a specific 
speaker. Methods based on speaker control vectors offer 
a promising solution and have achieved notable results 
in the voice cloning task.

Numerous researchers have highlighted the effective-
ness of current advanced TTS architectures in voice 
cloning. The FastSpeech 2 model stands out due to 
its rapid training and inference, attributed to its non-
autoregressive nature. Its transformer-based encoder-
decoder architecture offers flexibility for voice cloning. 
AdaSpeech, as introduced by [13, 14], enhances Fast-
Speech 2 by incorporating an acoustic information mod-
ule and integrating conditional layer normalization in the 
mel-spectrogram decoder, leading to markedly superior 
adaptation quality over traditional methods. Concur-
rently, VITS-based TTS systems [15, 16], harnessing the 
conditional variational auto-encoder (CVAE), are gaining 
attention, yielding more natural speech and with supe-
rior quality that cannot be distinguish from real human 
speech. A notable advancement in voice cloning technol-
ogy is proposed by the YourTTS and OpenVoice systems 
[6, 17]. These system augments the VITS framework with 
a speaker encoder, thereby enhancing its zero-shot voice 
cloning capabilities.

In addition to zero-shot adaptation for speakers, zero-
shot style adaptation in TTS has emerged as a highly rel-
evant task. Works such as PromptStyle and PromptTTS 
[18, 19] focus on style control for speech, specifically 
targeting speech emotion or accent. These approaches 
introduce separate style encoders and control latent vec-
tors into TTS systems, employing mechanisms similar to 
those used for speaker voice cloning, thereby broadening 
the scope of customization and expressiveness in synthe-
sized speech.

A prevalent challenge in voice cloning technology is 
the optimal utilization of style-control vectors or speaker 
embeddings within the TTS pipeline. Traditional voice 
cloning methods often rely on simplistic affine additions 
of speaker vectors at designated system locations, which 
can overlook the sequential nature of sequence features 
inherent to TTS models. It compromises the precise con-
trol of style, voice print, and semantic information from 
reference speech, leading to suboptimal outcomes. To 
address this, we introduce the Two-branch Speaker Con-
trol Module-based TTS (TSCM-TTS), a novel approach 

to zero-shot TTS that enhances speaker control in 
advanced TTS systems with our innovative Two-branch 
Speaker Control Module (TSCM). We further integrate 
this module within transformer encoder blocks, resulting 
in the TSCM-Transformer (TSCT).

Designed as an easily adaptable method, TSCM can be 
incorporated into any TTS system for enhanced speaker 
and style control. Our further integration of TSCM with 
robust frameworks like FastSpeech 2 and VITS dem-
onstrates superior performance compared to many 
advanced ZS-TTS models. The key innovations of our 
work include the following:

•	 Our TSCM-TTS method advances speaker control 
by optimizing the integration of the speaker’s vector 
into the ZS-TTS/VC models, outperforming current 
style-control techniques. This innovation enables 
effective voice personalization with minimal sample 
sentences, achieving enhanced zero-shot speaker 
adaptation. Notably, it ensures voice print accuracy 
and semantic naturalness, enabling precise voice 
customization.

•	 The proposed TSCM-TTS method is highly adapt-
able. We outline the specialized integration of TSCM 
within the FastSpeech 2 and VITS frameworks, 
which significantly enhances the capabilities of both 
few-shot and zero-shot TTS systems.

•	 Through extensive evaluations against multiple 
benchmarks in voice cloning tasks across various 
languages, our TSCM-enhanced VITS framework 
(TSCM-VITS) proves to be highly effective, outper-
forming numerous state-of-the-art systems even 
with fundamental training datasets and settings. Its 
exceptional performance is confirmed by a broad 
spectrum of subjective and objective assessments, 
underscoring its practicality and efficacy in real-
world applications.

The remainder of this paper is organized as follows: 
Section  2 discusses related work in the field. Section  3 
delves into the preliminary concepts underpinning our 
research. Section  4 describes the methodology behind 
our Two-branch Speaker Control Module (TSCM). Sec-
tion  5 focuses on the optimized integration of TSCM 
with state-of-the-art text-to-speech (TTS) models. The 
experimental results and analysis from our experiments 
are detailed in Sections  6 and 7. Finally, Section  8 con-
cludes the paper with our findings.

2 � Related work
2.1 � Text to speech (TTS)
TTS technology has evolved significantly over time. Early 
speech synthesis methods included articulatory, formant, 
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concatenative, and statistical parametric speech synthesis 
(SPSS) [20–23]. The introduction of deep learning has led 
to major improvements in speech synthesis using neural 
networks, significantly outperforming older techniques 
[9, 24, 25].

WaveNet marked a transformative shift in speech syn-
thesis, generating speech directly from linguistic features 
using a neural network [24]. This led to subsequent inno-
vations such as Tacotron 2 [9] and FastSpeech 2 [25], 
resulting in significant improvements in TTS quality. 
FastSpeech 2, in particular, advanced its predecessor by 
integrating explicit pitch and energy control [26] and by 
generating the mel spectrogram in parallel, which nota-
bly accelerated the synthesis process.

Recent developments have introduced end-to-end TTS 
synthesis models like VITS and VITS2, employing con-
ditional VAE architectures to achieve state-of-the-art 
results [15, 16]. Another notable innovation is TorToise 
or XTTS, which employs denoising diffusion probabilis-
tic models, similar to those utilized in image generation, 
to produce high-quality speech [27].

2.2 � Voice cloning (zero‑shot TTS)
Voice cloning stands as a critical task within text-to-
speech (TTS) technologies, striving to produce speech 
that closely mimics any target speaker from minimal 
additional training process. Our study delves into the 
challenges of both few-shot (w/ fast tuning) and zero-
shot (w/o tuning) adaptations, leveraging a limited data-
set and its corresponding transcriptions.

In the realm of few-shot TTS adaptation, works like 
[13] have fine-tuned specific parameters within the 
FastSpeech 2 framework. Zero-shot TTS advancements 
include utilizing style tokens in the Tacotron model [10] 
and extending FastSpeech 2 to achieve zero-shot capa-
bilities [12, 14]. The ECAPA-TDNN model, originally 
developed for speaker recognition, has also been adapted 
for TTS to enhance speech synthesis for new speakers 
[28]. A notable example is YourTTS, which extends the 
VITS model for zero-shot voice cloning [17]. Microsoft’s 
VALL-E presents an innovative approach to zero-shot 
TTS by framing it as a conditional language modeling 
task [29], using auto-regressive (AR) text encoder. Recent 
advancements include optimizing the VALL-E archi-
tecture with the GPT-based AR decoder, as seen in 
LauraTTS [30], trying to achieve unified large language 
model (LLM) for all AI tasks. Additionally, methods 
extending approach beyond VITS, like OpenVoice, pro-
pose a dual-stage inference process for improved synthe-
sis [6]. These contributions are summarized in Table  1. 
Despite the development of the LLM, the demand for 
expert models excel in distinct tasks such as voice cloning 

continues to grow, since dedicated expert models nor-
mally achieve high-quality, reliable performance.

Notwithstanding the progress, existing TTS systems 
often overlook the optimization needed for adapting 
speech for unseen speakers, primarily due to simplistic 
speaker control mechanisms—a limitation we address 
later in this study. Our work introduces a novel method 
for speaker and style control that enhances the condi-
tioning of control signals, aiming to achieve more opti-
mal performance in voice cloning.

3 � Preliminary concepts
3.1 � The architecture of FastSpeech 2
Our system is based on the advanced TTS model Fast-
Speech 2, which synthesizes the corresponding mel spec-
trogram from a given phoneme sequence. The model 
architecture of FastSpeech 2 is shown in Fig. 1. Phoneme 
sequences are obtained from normalized text sequences 
using the grapheme-to-phoneme tool1. Then, generated 
mel spectrogram is transferred to the speech waveform 
by using a pretrained HiFi-GAN vocoder2.

The FastSpeech 2 model contains three sub-modules, 
namely encoder, variance adaptor, and mel-spectro-
gram decoder, respectively. The encoder is designed for 
encoding the input phoneme sequence into the hidden 
sequence, followed by the variance adaptor, which adds 
different variance information (such as duration, pitch, 
and energy) into the hidden sequence. Finally, the mel-
spectrogram decoder decodes the processed hidden 
sequence to get the corresponding mel spectrogram. The 
feed-forward transformer block, which contains a multi-
head self-attention layer and two 1D convolution layers, 
is the basic structure for the encoder and mel-spectro-
gram decoder. The pitch and energy predictors in the var-
iance predictor are introduced to provide more variance 
information for the mel-spectrogram decoder, to ease 
the one-to-many mapping problem in TTS, while the 
phoneme sequence is expanded by the length regulator 

Table 1  State-of-the-art zero-shot TTS systems

Methods Timeline Multilingual General type

AdaSpeech [13] 2022.12 No Expert

YourTTS [17] 2023.1 Yes Expert

VALL-E-X [29] 2023.3 Yes Unified-LLM

Coqui XTTS [27] 2023.10 Yes Expert

LauraTTS [30] 2024.1 N/A Unified-LLM

OpenVoice [6] 2024.1 N/A Expert

1  https://​github.​com/​Kyuby​ong/​g2p
2  https://​github.​com/​jik876/​hifi-​gan

https://github.com/Kyubyong/g2p
https://github.com/jik876/hifi-gan
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module to match the length of the mel-spectrogram 
sequence. Figure  1 offers an overview of the baseline 
FastSpeech 2 architecture, augmented with our innova-
tions for the sake of compactness. Detailed discussion of 
our modifications will follow in subsequent sections.

3.2 � The architecture of VITS
The VITS model is described as a conditional variational 
autoencoder (CVAE) with adversarial learning for end-
to-end text-to-speech (TTS) synthesis. It employs vari-
ational inference augmented with normalizing flows and 
an adversarial training process to enhance the expressive 
power of generative modeling. The model also proposes a 
stochastic duration predictor to handle the one-to-many 
relationship in speech synthesis, allowing for the gen-
eration of speech with diverse rhythms from text input. 
Through these mechanisms, the VITS model aims to 
improve the naturalness and efficiency of TTS systems, 
striving to generate more natural-sounding audio than 
conventional two-stage models. In Fig.  5, we show the 
basic VITS training architecture, which also includes our 

modifications for conciseness. Further details on these 
modifications will be provided in later sections

3.3 � Basic methods for speaker control in zero‑shot TTS
Consistent with established methods such as those in 
AdaSpeech [13] and YourTTS [17], incorporating a 
speaker identity encoding module is essential for a TTS 
model to generate speech in various desired voices. Spe-
cialized speaker encoders, like the mel-style encoder 
from [14] or the ECAPA-TDNN [28], are typically 
employed.

The conventional method for integrating speaker 
embeddings into the model’s architecture typically 
includes either a direct addition or a combination of addi-
tion and multiplication with the model’s hidden sequence 
output, as discussed in AdaSpeech [13] and supplemen-
tary literature [14]. Shown in Fig. 2, this naive approach 
can be mathematically described as follows:

(1)hinext = fθ (embspk) ∗ h
i
current + fθ (embspk)

Fig. 1  Integration of our TSCM method into the FastSpeech 2 architecture. The TSCM-FastSpeech2 model utilizes a mel-style encoder to extract 
the latent speaker vector from the reference mel spectrogram of the target speaker and the TSCM-Transformer (TSCT) serving as an advanced 
control for speaker identity
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Here, fθ serves as a transformation function to affine 
the speaker embedding embspk to align with the dimen-
sions of the current hidden state hcurrent . This operation 
is conducted frame by frame, ranging from i = 1 to T, 
where T denotes the total number of frames. The out-
come hnext is a frame-level feature that is conditioned 
upon the identity of the speaker.

4 � Two‑branch Speaker Control Module (TSCM)
To enhance feature fusion beyond naive approaches 
described in the preliminaries, we aim for more efficient 
control of style, voice print, and semantic information 
from reference speech. This is critical for improving the 
effectiveness of sequence generation, resulting in better 
semantic accuracy, voice quality, and speaker similarity 
in generated speech. Our methodology leverages three 

fundamental and established sequence processing blocks: 
the Gated Convolutional Network (GCN) [31], GRU-
based (RNN) modeling, and self-attention mechanisms. 
The integration of these components through the TSCM 
and TSCM-Transformer enables rapid and efficient zero-
shot speaker and style control. Importantly, the TSCM is 
designed as an on-the-shelf module that can be seamlessly 
integrated into a variety of advanced TTS systems, thereby 
broadening its application for improved speaker and style 
adaptation. The design, implementation, and evaluation of 
these innovations are detailed in the subsequent sections.

4.1 � Methodology for TSCM
To adapt popular text-to-speech models for voice clon-
ing tasks, we utilize the mel-style speaker encoder module 
as mentioned in [14] to obtain the latent speaker vector 
embspk . This encoder improves adaptation performance 
for unseen speakers. As illustrated in Fig. 1, the mel-style 
encoder extracts the latent speaker vector embspk from the 
mel spectrogram of reference speech.

To efficiently control the speaker identity in the gener-
ated speech’s mel spectrogram using the reference audio, 
we propose the advanced Two-branch Speaker Control 
Module (TSCM).

First, inspired by the Gated Convolutional Network 
(GCN) [31], we introduce a connection to the convolu-
tional layers (conv1 and conv2), which is conditioned on 
the speaker vector as a Soft Gate, as illustrated in Fig.  3. 
This connection comprises a convolution layer (conv3) and 
a Sigmoid activation function layer. The enhanced CNN 
layers constitute the CNN branch of the TSCM block. 
The input sequential feature hinput is combined with the 
time-expanded latent speaker vector embspk . This com-
bined input is then processed through the conv3 layer and 
Sigmoid function to generate a ranged-limited Soft Gate 
control signal. The output of the CNN branch, hcnn , is rep-
resented as follows:

where Sigmoid and conv represent the Sigmoid activa-
tion function and convolution operation, respectively. 
The CNN branch effectively models local frame-to-frame 
information in speech, ensuring that the output features 
are controlled by the speaker vector.

Additionally, we incorporate a gated recurrent unit 
(GRU) module, termed the RNN branch, to manage the 
overall speaker style of the generated sentence. The GRU 
module decodes each frame hinput with the speaker vector 
embspk as the initial state, described as follows:

(2)
hcnn = Sigmoid(conv(hinput + embspk)) ∗ conv(hinput)

(3)hrnn(t) =
GRU(embspk , hinput(t)) if t = 1
GRU(hrnn(t − 1), hinput(t)) else

Fig. 2  A conceptual overview of the baseline style-control method 
for current state-of-the-art zero-shot TTS and voice cloning models
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where hinput(t) and hrnn(t) represent the GRU’s input and 
output frames at each step. The GRU outputs across all 
decoding steps are combined to form the final feature 
hrnn of the RNN branch, enabling utterance-wide speaker 
style control.

Finally, we apply layer normalization (LN) [32] to both 
CNN and RNN branch outputs ( hcnn and hrnn ) and then 
combine them as the final output of each TSCM block. 
This module effectively controls the speaker identity at 
both utterance-wide and local frame levels.

4.2 � Methodology for TSCM‑Transformer (TSCT)
The Two-branch Speaker Control Module (TSCM) is 
naturally designed to be combined with the transformer 
encoder block, a component widely utilized in state-of-
the-art TTS systems [15, 25]. Within the transformer 
encoder, the hidden state for the attention module, hattn , 
exists at the phoneme and frame level and is typically 
used as the input for the feed-forward network (FFN), 
as depicted in Fig. 4. TSCM effectively replaces the FFN, 
enabling precise control of the speaker identity. This 
integration gives rise to what we designate as the TSCM-
Transformer (TSCT). The output of TSCT, houtput , is pro-
cessed from the block input hinput as follows:

where MultiHeadAttn(·) represents the transformer’s 
multi-head attention network. This seamless integration 
of TSCM with the transformer encoder not only allows 
for effective speaker identity control but also facilitates 
smoother incorporation with current transformer-based 
state-of-the-art TTS systems.

5 � Integration of TSCM within the state‑of‑the‑art 
TTS systems

5.1 � Optimized integration of TSCM within the FastSpeech 
2 framework

We have augmented the FastSpeech 2 architecture by 
incorporating the Two-branch Speaker Control Mod-
ule (TSCM). This process replaces the speaker-control 
components of the AdaSpeech framework [13], which 
combined speaker embedding with the phoneme 
encoder’s output hidden features using naive addition 
and utilized Speaker-Adaptive Layer Normalization in 
the mel decoder. Our method integrates the TSCM-
Transformer (TSCT) into both the phoneme encoder 

(4)hattn = MultiHeadAttn(hinput)

(5)houtput = TSCM(hattn, embspk)

Fig. 3  The details of the TSCM block are shown in the figure, where the embspk is used for constraining the hidden state by introducing 
both the recurrent and a convolution branch. The addition and multiplication operations are represented by 

⊕

 and 
⊗

 respectively
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and mel-spectrogram decoder, as depicted in Fig. 4. The 
mel-style speaker encoder is employed for extracting 
speaker embeddings. The overall architecture, shown in 
Fig. 1, is referred to as TSCM-FastSpeech 2.

5.2 � Optimized integration of TSCM within the VITS 
framework

The incorporation of the Two-branch Speaker Con-
trol Module (TSCM) into the VITS architecture aims 
to enable better speaker control across its three main 
modules: the text encoder, duration predictor, and gen-
erator. Figures 5 and 6 illustrate the overall architecture 
of this model for training and inference, respectively. 
The following sections outline the mathematical formu-
lations and discussions related to this integration.

•	 Duration predictor: We apply TSCM to con-
sider both temporal patterns and speaker-specific 
information. With text features wtext and speaker 
embedding embspk , the enhanced output, wdur , is 
determined as follows: 

•	 Generator: The generator takes flow output fea-
tures wflow and combines them with the speaker 
embedding using TSCT. The modified output wgen 
is then given by the following: 

(6)wdur = TSCM(wtext, embspk)

Fig. 4  The original feed-forward transformer block and the details of the TSCM block integration to the transformer models, resulting in the TSCT 
block

Fig. 5  Overview of our proposed TSCM-VITS model 
during the training procedure, adapted from [15]. This figure 
highlights the TSCM integration we introduced to the VITS 
framework, aiming to optimize feature fusion for zero-shot speaker 
adaptation in text-to-speech synthesis
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•	 Text encoder: TSCT is utilized in the text encoder 
to process the output from the multi-head attention 
modules in each transformer block. If wh is the multi-
head attention output, the resulting wout is given by 
the following: 

Incorporating TSCM into the VITS framework sig-
nificantly improves its core modules. The duration 

(7)wgen = TSCM(wflow, embspk)

(8)wh = MultiHeadAttention(win)

(9)wout = TSCM(wh, embspk)

predictor gains enhanced contextual awareness, allow-
ing for more accurate reflection of temporal patterns 
and speaker characteristics. The generator, with its 
refined ability to capture speaker-specific attributes, 
contributes to the naturalness and expressivity of the 
synthesized speech. Furthermore, the text encoder, 
through TSCM-Transformer (TSCT), more effectively 
contextualizes textual inputs with the speaker’s unique 
tones and rhythms, leading to a robust text representa-
tion for subsequent processing. For the other modules 
in the VITS framework, we maintain the speaker-
control method as utilized in YourTTS [17], as indi-
cated by the dashed thin arrows in Figures  5 and  6. 
The integration of TSCM across these components is 
expected to yield highly expressive and personalized 
speech synthesis, and we denote this enhanced system 
as TSCM-VITS.

Fig. 6  Overview of our proposed TSCM-VITS model during the inference procedure, adapted from [15], with TSCM, our optimized feature fusion 
for zero-shot speaker adaptation in text-to-speech synthesis
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6 � Experiments
6.1 � Training setup
Our TSCM-TTS system and the corresponding Fast-
Speech 2-based and VITS-based baselines were trained 
on the train-clean-360 subset of the LibriTTS multi-
speaker TTS corpus [33]. For the purpose of few-shot 
fine-tuning and testing, we randomly selected 12 speak-
ers, comprising an equal number of males and females. 
The rest of the data, encompassing utterances from 892 
different speakers, was used for the initial training phase. 
A similar training and evaluation approach was adopted 
for the Chinese AiShell dataset [34], where 12 speakers 
were reserved for evaluation, and the remaining data was 
utilized to train the Chinese Mandarin versions of our 
proposed TSCM-TTS system and baseline models.

In our experiments, all utterances are resampled to a 
frequency of 22,050 Hz. We extract 80-dimensional mel 
spectrograms from these re-sampled waveforms. Each 
model is trained for 250,000 steps using a batch size of 
50. Regarding other training considerations, such as 
losses and data processing strategies, we adhere to the 
protocols described in the original works. Specifically, 
for VITS models, we adopt the training settings from 
[15]. For FastSpeech 2, we adhere to the configurations 
outlined in [25]. Its inference process involves convert-
ing generated mel spectrograms to audio waveforms via a 
pretrained HiFi-GAN vocoder [35].

6.2 � Evaluation details and metrics
6.2.1 � Metrics
We employ an array of metrics to thoroughly evaluate 
the quality of generated speech and the comparative per-
formance of different models. For subjective evaluation, 
we conduct human evaluations using the MOS (mean 
opinion score) for naturalness and the SMOS (similarity 
MOS) for speech similarity.

For objective assessments, we utilize a third-party pre-
trained speaker verification model3 to extract speaker 
embeddings from the provided speech. We compute the 
speaker encoder cosine similarity (SECS) by comparing 
speaker embeddings from both synthesized and ground-
truth speeches. Additionally, we measure mel-cepstral 
distortion (MCD) to gauge structural disparities [36]. 
Dynamic time warping (DTW) is employed to synchro-
nize unequal-length speech sequences prior to their com-
parison [37]. Word error rate (WER) is determined using 
a CNN-Transformer ASR pretrained model from Speech-
Brain4. These metrics align closely with the evaluation 

methodologies detailed in prominent studies such as [17, 
30], thereby ensuring our assessment approach is consist-
ent with current best practices in the field.

6.2.2 � Zero‑shot and few‑shot setups
For the few-shot setup, we select approximately 15 text-
audio pairs per speaker and fine-tune them for about 1k 
steps using the test set. In the zero-shot scenario, a sin-
gle utterance serves as the reference audio, and speech is 
generated in line with the provided text for each speaker. 
We select 15 text samples for each speaker from the test-
ing set, ensuring they are distinct from those used during 
training or fine-tuning, to form the test list. Subsequently, 
the generated speeches are evaluated using both subjec-
tive and objective metrics, with the objective evaluations 
encompassing all generated speech files.

6.2.3 � Subjective evaluation
We established a web-based system for subjective assess-
ments. A set of 16 utterances was randomly chosen from 
the test list. For each utterance, outputs from all systems, 
along with the reference audio, were randomly presented 
on a single webpage. In the MOS assessment, listeners 
rated the synthesized utterance quality. In the SMOS 
assessment, listeners gauged the similarity between 
actual and synthesized utterances for the same speaker. 
Both MOS and SMOS used a 1 to 5 rating scale. For each 
test, over 15 judges participated, each rating the 16 ran-
domly chosen utterances from all participated systems.

6.3 � Other implementation details on model configurations
For TSCM-TTS systems, the mel-style speaker encoder 
architecture is based on [14]. The foundational modules 
of TTS systems align with FastSpeech 2 [25] and VITS 
[15]. Within each feed-forward transformer block, the 
multi-head attention design adheres to FastSpeech 2, 
but the feed-forward layers are replaced with the TSCM. 
The CNN branch of TSCM employs dilated convolu-
tion, with kernel sizes for Conv2 and Conv3 set to 1 and 
Conv1 set to 9. The GRU unit’s hidden size in the RNN 
branch is 256. A dropout [38] with a rate of 0.2 precedes 
the LN in each TSCM branch. For baseline systems, we 
adopted speaker control modules from AdaSpeech [13] 
and YourTTS [17] for their respective FastSpeech 2 and 
VITS architectures. All other configurations, particularly 
the speaker encoder and training setup, are kept consist-
ent with TSCM-TTS to guarantee a fair comparison.

7 � Results and ablation studies
7.1 � Comparative results for TSCM on FastSpeech 2
In our comparative experiments, we evaluated the per-
formance of several models. The basic GT mel + HiFi-
GAN model utilizes the ground-truth mel spectrogram, 

3  https://​github.​com/​resem​ble-​ai/​Resem​blyzer
4  https://​huggi​ngface.​co/​speec​hbrain/​asr-​trans​former-​trans​forme​rlm-​libri​
speech

https://github.com/resemble-ai/Resemblyzer
https://huggingface.co/speechbrain/asr-transformer-transformerlm-librispeech
https://huggingface.co/speechbrain/asr-transformer-transformerlm-librispeech
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which is directly converted into audio using a pretrained 
HiFi-GAN vocoder. The baseline model, FS2 without 
TSCM control, is the integration of FastSpeech 2 with a 
latent speaker vector obtained via the mel-style encoder, 
and it employs style control based on the methods and 
positions outlined in AdaSpeech [12], as detailed in Sec-
tion 3.3. Lastly, our proposed TSCM-FastSpeech 2 builds 
upon FastSpeech 2 by incorporating the TSCM-Trans-
former (TSCT) block.

Referring to Table  2, our TSCM-FastSpeech 2 model, 
tested on the LibriTTS dataset, demonstrates superior 
performance. The MCD metric for our model improves 
by approximately 0.20 and 0.25 compared to the zero-
shot and few-shot variants of the baseline model, respec-
tively. Similarly, the SMOS score for our method registers 
an increase of about 0.13 and 0.69 over the zero-shot and 
few-shot versions of FS2 without TSCM control.

In a closer examination of the synthesis quality, the mel 
spectrograms further substantiate our findings. Referring 
to Fig.  7, the mel spectrograms generated by different 
systems are compared directly against the ground-truth 
(GT) spectrogram. The TSCM-FastSpeech 2 model 
clearly yields superior synthesis quality. When set side by 
side with the GT spectrogram, the TSCM-FastSpeech 2 

version reveals fewer spectral inconsistencies and cap-
tures more granular details. In contrast, the baseline 
model exhibits certain spectral gaps and mismatches. 
The regions marked with red rectangles highlight these 
spectral disparities. Such spectral visualizations reaffirm 
that the TSCM-FastSpeech 2 system, even in a zero-shot 
setup, closely matches the fidelity of the GT spectrogram 
more than its counterparts.

These metrics suggest that our synthesized speech 
more closely resembles authentic speech, offering a more 
natural listening experience and improved similarity to 
the speaker’s unique voice print.

7.2 � Comparative results for TSCM on VITS
Table  3 presents the performance metrics of various 
VITS-based models on the LibriTTS dataset, with ground 
truth (GT) serving as the benchmark. The VITS without 
TSCM control model is our baseline for zero-shot voice 
cloning. This enhanced the VITS architecture by inte-
grating YourTTS [17] features, applying speaker control 
techniques as detailed in Section  3.3. Our TSCM-VITS 
model outperforms the baseline and other adaptations, 
showing superior performance in all evaluated subjec-
tive and objective metrics. Notably, despite the baseline’s 

Table 2  Comparative metrics of FastSpeech 2-based models on LibriTTS

Model Type WER (%) ↓ MCD (dB) ↓ SECS ↑ MOS ↑ SMOS ↑

GT - - - - 4.56 4.48

GT mel + HiFi-GAN - - 2.99 0.97 4.16 4.04

FS2 w/o TSCM control [12] Zero-shot 7.05 7.49 0.76 2.80 2.79

TSCM-FastSpeech 2 (ours) Zero-shot 6.73 7.29 0.77 2.91 2.85
FS2 w/o TSCM control [12] Few-shot 6.84 7.28 0.86 3.38 3.00

TSCM-FastSpeech 2 (ours) Few-shot 6.50 7.03 0.87 3.81 3.69

Fig. 7  Comparison of mel spectrograms synthesized by baseline models and TSCM-FastSpeech 2
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improved performance in few-shot scenarios, TSCM-
VITS consistently excels, underlining its effectiveness.

In Table 4, we extend our analysis to models trained on 
the Chinese AiShell3 dataset, focusing on zero-shot TTS 
performance. This comparison reaffirms the TSCM-VITS 
model’s consistent superiority over baseline systems in 
both Chinese AiShell and English LibriTTS datasets 

across every evaluated metric, showcasing its robust 
applicability and effectiveness in voice cloning across 
languages.

Upon closely examining the mel spectrograms in Fig. 8, 
it is clear that the TSCM-VITS system performs better 
than the others. When we compare the outputs to the 
ground-truth (GT) spectrogram, the TSCM-VITS system 

Table 3  Comparative metrics of VITS-based TSCM models on LibriTTS

Model Type WER (%) ↓ MCD (dB) ↓ SECS ↑ MOS ↑ SMOS ↑

GT - - - - 4.56 4.48

VITS w/o TSCM control [15, 17] Zero-shot 6.44 7.00 0.78 3.76 3.68

TSCM-VITS (ours) Zero-shot 6.03 6.87 0.80 4.12 3.79
VITS w/o TSCM control [15, 17] Few-shot 6.65 6.70 0.85 3.88 3.81

TSCM-VITS (ours) Few-shot 5.68 6.57 0.87 4.30 4.12

Table 4  Comparative metrics of VITS-based TSCM models on AiShell (Chinese)

Model Type WER (%) ↓ MCD (dB) ↓ SECS ↑ MOS ↑ SMOS ↑

GT CN - - - - 4.60 4.61

VITS w/o TSCM control 
[15, 17]

Zero-shot 12.21 6.95 0.80 4.32 4.30

TSCM-VITS (ours) Zero-shot 10.96 6.83 0.81 4.44 4.43

Fig. 8  Comparison of mel spectrograms synthesized by baseline models and TSCM-VITS
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has fewer incorrect parts, and its details are clearer. Addi-
tionally, the tone of the TSCM-VITS is closer to what is 
in the GT. An example of this is in the area highlighted 
by the red rectangle at the end of the spectrogram. In 
the GT, the tone goes up, while the baseline model’s tone 
goes down. However, the TSCM-VITS correctly follows 
the upward tone seen in the GT. This shows that the 
TSCM-VITS system can produce outputs that are much 
closer to the original audio, making it a reliable choice for 
speech synthesis.

These results clearly highlight that in both zero-shot 
and few-shot scenarios, the TSCM-VITS consistently 
outperforms the baselines with all metrics. Such find-
ings emphasize the benefits of integrating TSCM into the 
VITS architecture.

7.3 � Comparative voice cloning performance of TSCM‑TTS 
with state‑of‑the‑art systems

Table  5 presents a comparative analysis of our TSCM-
VITS zero-shot model against leading zero-shot TTS 
systems, evaluated using the latest online demos as ref-
erenced in the table. Among these, the Microsoft VALL-
E-X system emerges as a notable voice cloning solution 
from 2023, alongside CoquiAI’s XTTS, which leverages 
the TorToise framework for high-quality voice clon-
ing. Our model, TSCM-VITS zero-shot, builds upon the 
VITS architecture by incorporating the TSCM module, 
enhancing voice quality and speaker similarity as detailed 
in Section 7.2.

Additionally, we benchmark against recent advance-
ments such as OpenVoice, a cutting-edge non-AR 
method, and LauraTTS, which utilizes a GPT-based AR 
approach. Despite these systems employing more com-
plex multistage training and inference processes, our 
TSCM-VITS zero-shot model demonstrates competi-
tive performance across key metrics, underscoring its 
effectiveness in voice quality and speaker similarity. Our 
approach distinguishes itself by being a direct, light-
weight enhancement to the VITS architecture, offering 
state-of-the-art performance without the complexity of 

multistage methods, thus presenting a promising avenue 
for future research integration.

Expanding our evaluation to the AiShell3 Chinese data-
set, as documented in Table 6, TSCM-VITS consistently 
outperforms these state-of-the-art systems in multilin-
gual contexts, including Microsoft VALL-E-X and Coqui 
AI’s XTTS. This reaffirms the TSCM-VITS module’s 
superiority in delivering high-quality voice cloning across 
both English and Chinese datasets. Fig. 9 further demon-
strate the mel-spectrum comparison of these advanced 
systems, indicating the effectiveness of our proposed 
method.

Additionally, Table  7 outlines the datasets utilized by 
the state-of-the-art (SOTA) systems featured in Table 5. 
Employing the standard LibriTTS dataset settings, our 
proposed TSCM-TTS system outperforms other SOTA 
systems, affirming its effectiveness.

As shown in Fig. 10, we present a t-SNE visualization 
of speaker embeddings for enrolled utterances and syn-
thesized utterances, extracted using the Resemblyzer 
package. The XTTS system, while generating audios with 
superior auditory effects, not only falls short in terms of 
speaker control but also exhibits speaker confusion, as 
indicated by the dispersed positioning of the enrollment 
utterances relative to the synthesized audios. The VALL-
E-X system demonstrates improved speaker control, with 
the enrollment utterances positioned more centrally 
within the cluster of synthesized audio embeddings. 

Table 5  Performance comparative metrics of our TSCM-TTS with other advanced zero-shot TTS systems on English speech synthesis

Model Subjective Objective

MOS ↑ SMOS ↑ MCD (dB) ↓ SECS ↑

GT 4.56 4.48 - -

Microsoft VALL-E-X (2023 DEMO) [29, 39] 3.80 3.65 9.04 0.74

Coqui AI XTTS v2 (2023 DEMO) [27, 40] 4.05 3.60 9.35 0.72

OpenVoice (2024 DEMO) [6, 41] 4.04 3.95 8.37 0.79

LauraTTS (2024 DEMO) [30, 42] 4.08 3.90 8.40 0.83
TSCM-VITS zero-shot (ours) 4.30 4.12 6.79 0.81

Table 6  Performance comparative metrics of our TSCM-TTS 
with other advanced zero-shot TTS systems on Chinese speech 
synthesis

Model Subjective Objective

MOS ↑ SMOS ↑ MCD (dB) ↓ SECS ↑

GT CN 4.60 4.61 - -

Microsoft VALL-E-X CN [29, 39] 3.72 3.73 8.51 0.80

Coqui AI XTTS v2 CN [27, 40] 4.11 4.10 9.35 0.72

TSCM-VITS zero-shot CN (ours) 4.44 4.43 6.83 0.81
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However, it is worth noting that the audio quality of 
VALL-E-X does not match that of other systems when 
evaluated by additional metrics. Our system, TSCM-TTS, 
exhibits superior speaker control, shown by the dense 
clustering of synthesized audio embeddings around the 
enrollments. Furthermore, according to various metrics, 
our system also delivers improved audio quality.

This comparison highlights the TSCM-TTS’s capability 
in achieving superior zero-shot voice cloning with high-
quality speech synthesis.

Fig. 9  Comparison of mel spectrograms synthesized by several advanced ZS-TTS systems and TSCM-VITS in Chinese zero-shot scenarios. The 
TSCM-VITS shows better voice print similarity and better word spoken accuracy. More samples can be found in our online demo

Table 7  A concise overview of the datasets employed to train 
various state-of-the-art TTS models (English version), as reflected 
in the datasets underlying their publicly available demo versions

Model Training datasets

VALL-E-X LibriLight (60k h), etc. [29]

XTTS v2 LibriTTS, VTCK, LJSpeech, etc. [43]

OpenVoice LibriTTS

LauraTTS LibriTTS, etc. [30]

TSCM-TTS (ours) LibriTTS (360 h)

Fig. 10  Comparison of speaker embeddings: TSCM-VITS versus state-of-the-art zero-shot TTS systems
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7.4 � Ablation study and auxiliary analysis
7.4.1 � Ablation study on TSCM’s effectiveness in speaker 

control
We conducted an ablation study to assess the contribu-
tions of the CNN and RNN branches within the TSCM 
for speaker control in voice cloning. For this purpose, we 
compared the primary architecture, TSCM parallel with 
two other variants: TSCM CNN which employs only the 
CNN branch within the TSCM block and TSCM RNN 
which utilizes solely the RNN branch within the TSCM 
block.

Table  8 showcases the outcomes. The results clearly 
show that using both the CNN and RNN branches in 
TSCM parallel gives better performance than using them 
individually, achieving a lower MCD score. This com-
bined approach, using both local feature control from 
the CNN and utterance-level control from the RNN, pro-
vides more effective speaker-specific modeling. Our find-
ings underscore the importance of the TSCM module 
with both branches for enhanced speaker control in voice 
cloning systems.

7.4.2 � Auxiliary analysis of in‑domain speakers: 
a comparative study of TSCM‑VITS and VITS+ 
in multi‑speaker TTS systems

In addition to voice cloning, we also assessed the perfor-
mance of our proposed TSCM-VITS system in the con-
text of in-domain multi-speaker text to speech (MS-TTS). 
For baseline comparison, we employed an advanced ver-
sion from the VITS series, termed VITS+. This system 
features an enhanced speaker control branch integrated 
into its text encoder, as described in [16], a leading work 
in the field. Table  9 presents our findings. Notably, the 
TSCM-VITS demonstrates superior speaker control, 
which is reflected in its improved objective results.

7.4.3 � Comparison of few‑shot learning capability
We investigate the influence of few-shot fine-tuning steps 
on the efficacy of our proposed system, setting the step 
range from 0 to 10,000. The experimental setups remain 
consistent with prior descriptions. The zero-shot sce-
nario corresponds to a step count of 0, where the model, 
as trained, is employed directly for testing.

From Fig.  11, a significant enhancement in MCD is 
observed as the training steps increase. The SECS value 
shows a subtle upward trend throughout the fine-tuning 
process. Meanwhile, the WER exhibits a gentle decrease 
with increased steps, hinting at improved recognition 
accuracy. Distinctly, the TSCM-VITS model outperforms 
the TSCM-FastSpeech 2 consistently across the metrics. 
It is noteworthy that the most prominent performance 
boost is observed between 0k and 1k steps, underscor-
ing the effectiveness of the fine-tuning phase. After 5,000 
steps, the enhancements in SECS and WER metrics sta-
bilize. Given these observations, we determine an opti-
mal fine-tuning range of 1 to 5k steps for our few-shot 
experiments, as evidenced in prior sections.

We then delve into the implications of varying fine-
tuning sample sizes on the performance of our proposed 
system. The fine-tuning sample size is varied from 5 to 
30, with increments set at intervals of 5.

As illustrated in Fig.  12, a notable enhancement in 
MCD, WER, and SECS is observed up to the first 15 
samples. The TSCM-VITS model consistently outper-
forms its counterpart, TSCM-FastSpeech 2, across all 
sample sizes. Notably, post the 15-sample mark, the 
progression in the evaluation metrics begins to stabilize, 
with only marginal improvements discerned. Taking into 
account the balance between achieving optimal perfor-
mance and the availability of training data, a fine-tuning 
sample size of 15 emerges as the optimal choice for the 
TSCM-TTS systems. This selection has been employed 
in the few-shot experiments showcased in the preceding 
Sections 7.1 and 7.2.

In few-shot scenarios, our TSCM-TTS system effi-
ciently achieves improved voice cloning with minimal 
data, enabling fast adaptation with reduced computa-
tional resources. This underscores the system’s practical-
ity and effectiveness in rapidly adjusting to new speakers 
or styles.

7.4.4 � Comparison of TSCM using word‑level spoken quality
We evaluate the semantic-level spoken correlation 
through a word-level spoken correlation score. This met-
ric, detailed in Table 10, alongside other subjective evalu-
ations, collectively underscores the TSCM-VITS system’s 
enhanced ability to capture semantic information. This 
is reflected in the improved naturalness and contextual 
coherence of word pronunciation within sentences.

Table 8  Ablation study on TSCM’s effectiveness in speaker 
control on TSCM-FastSpeech 2

Model MCD (dB) ↓ SECS ↑

TSCM CNN only 7.16 0.858

TSCM RNN only 7.24 0.843

TSCM parallel (proposed) 7.03 0.866

Table 9  Comparative analysis of in-domain multi-speaker TTS 
(MS-TTS) systems: proposed TSCM-VITS versus VITS+ baseline

Model MCD (dB) ↓ SECS ↑

VITS+ MS-TTS [15, 16] 6.11 0.875

TSCM-VITS MS-TTS (ours) 5.45 0.883



Page 15 of 18Chen et al. EURASIP Journal on Audio, Speech, and Music Processing         (2024) 2024:28 	

To quantify the improvement of the TSCM systems using 
an objective metric that correlates with subjective percep-
tions, we introduce a semantic-related auxiliary metric: the 
word alignment score. This score is defined as follows:

Here, dword represents the duration of each word in 
the ground truth, measured using the Montreal Forced 
Aligner (MFA) algorithm, and dpredict denotes the pre-
dicted word duration by the TTS system. A lower score 
indicates better alignment with the ground truth, signify-
ing more accurate word-level spoken timing.

Our TSCM-VITS system demonstrates superior per-
formance compared to both baseline and state-of-the-
art systems in this objective evaluation. This underscores 
our system’s enhanced ability for zero-shot voice clon-
ing, producing utterances that more closely mimic the 
ground truth in terms of spoken word alignment and 
overall sound quality.

(10)scoreword = mean

(∣

∣

∣

∣

dpredict − dword

dword

∣

∣

∣

∣

× 100

)

.

7.4.5 � Computational speed analysis
In this section, we conduct a computational cost anal-
ysis to evaluate the efficiency of the proposed TSCM 
module, focusing on training and inference speeds. 
This analysis is carried out on Nvidia 30 series GPUs, 
typical of server-side GPU setups. It is important to 
note that both the baseline systems and our TSCM-
VITS framework are configured for server-side exe-
cution. None of these systems, including ours, have 
been optimized specifically for the trade-off between 
computational efficiency and performance. Therefore, 
our comparative evaluation of training and inference 
speeds is conducted solely in the context of server-side 
performance.

The results, detailed in Table  11, demonstrate that 
incorporating the TSCM module into the VITS frame-
work marginally decreases computational speed. Train-
ing speed sees a 13% reduction, while inference speed 
decreases by 15% compared to the baseline VITS 
model without the TSCM module. Despite these speed 

Fig. 11  The impact of fine-tuning steps on the performance of our proposed systems in few-shot scenarios
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reductions, the overall performance impact remains 
minimal, suggesting that the addition of the TSCM 
module introduces a negligible effect on user experi-
ence regarding computational efficiency.

8 � Conclusion and future works
In the realm of voice cloning (VC) and zero-shot TTS 
(ZS-TTS) technologies, a significant challenge lies in 
optimally utilizing style-control vectors or speaker 
embeddings within the TTS pipeline. This often results 
in diminished control over style, voice print, and 
semantic information from reference speech, lead-
ing to suboptimal outcomes. Our study introduces 
the Two-branch Speaker Control Module-based TTS 

Fig. 12  The impact of fine-tuning samples on the performance of our proposed systems in few-shot scenarios

Table 10  Auxiliary analysis for TSCM-TTS: word-level spoken 
alignment

Model Word 
alignment 
score (%)↓

VALL-E-X 20.04

XTTS v2 15.22

OpenVoice 18.93

LauraTTS 25.08

VITS w/o TSCM 15.33

TSCM-VITS (ours) 14.23

Table 11  Computational speed analysis for TSCM-TTS

Methods Training speed (it/s)↑ Inference 
speed 
(sentence/s)↑

VITS w/o TSCM 1.578 5.284

TSCM-VITS (ours) 1.374 4.471
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(TSCM-TTS), a novel approach aimed at improv-
ing voice customization capabilities in voice cloning 
systems. This method facilitates enhanced zero-shot 
and few-shot speaker adaptation using minimal refer-
ence audio samples within the current voice cloning 
architecture.

The adaptability and versatility of TSCM are note-
worthy, enabling its straightforward integration into 
existing leading TTS models. We have detailed the 
incorporation of TSCM with FastSpeech 2 and VITS, 
two advanced TTS frameworks. This integration sig-
nificantly boosts their performance, especially in zero-
shot TTS scenarios for TSCM-VITS, even with basic 
training settings, surpassing many state-of-the-art sys-
tems in multi-language evaluations. Our comprehen-
sive comparative analyses demonstrate the benefits of 
the TSCM-centric approach, with both objective and 
subjective evaluations confirming its superiority.

Looking ahead, several promising directions have 
emerged for further enhancing our work. The TSCM 
could be seamlessly extended for speech style control, 
potentially being applied in emerging multimodal speech 
style editing tasks to modulate speech emotion, language, 
and accent. Such advancements aim to expand its utility 
across various speech synthesis challenges. Additionally, 
with the growing interest in artificial general intelligence 
(AGI) and large language models (LLMs), TSCM’s inte-
gration into LLM-based ZS-TTS models for improved 
control presents an interesting direction for research. 
This will require more extensive study to understand how 
its integration with TSCM-based style and speaker con-
trol modules can be effectively realized.

Abbreviations
ZS-TTS	� Zero-shot text-to-speech synthesis
VC	� (Zero-shot) voice cloning (=ZS-TTS)
TSCM	� Two-branch Speaker Control Module
VITS	� An advanced CVAE-based TTS model [15]
FS2	� FastSpeech 2, a fast TTS model
TSCT	� TSCM-based transformer
ZS/FS	� Zero-shot learning/few-shot learning
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