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Abstract
In this paper, we propose MM-KWS, a novel approach to

user-defined keyword spotting leveraging multi-modal enroll-
ments of text and speech templates. Unlike previous meth-
ods that focus solely on either text or speech features, MM-
KWS extracts phoneme, text, and speech embeddings from
both modalities. These embeddings are then compared with the
query speech embedding to detect the target keywords. To en-
sure the applicability of MM-KWS across diverse languages,
we utilize a feature extractor incorporating several multilingual
pre-trained models. Subsequently, we validate its effectiveness
on Mandarin and English tasks. In addition, we have integrated
advanced data augmentation tools for hard case mining to en-
hance MM-KWS in distinguishing confusable words. Exper-
imental results on the LibriPhrase and WenetPhrase datasets
demonstrate that MM-KWS outperforms prior methods signifi-
cantly.
Index Terms: user-defined keyword spotting, multi-modal,
multilingual, hard case mining, zero-shot learning

1. Introduction
Traditional keyword spotting (KWS) systems typically rely on
extensive datasets for recognizing predefined keywords like
”Ok Google” and ”Hey Siri” [1, 2]. However, customiz-
ing these keywords requires costly data collection and model
training processes. To address this issue, recent research has
shifted focus towards user-defined keyword spotting (UDKWS)
[3, 4, 5, 6], which aims to accurately detect new keywords us-
ing limited examples, thus offering a more flexible and efficient
solution to meet users’ needs.

Previous studies have utilized large vocabulary continuous
speech recognition (LVCSR) systems to transcribe audio into
lattices, facilitating keyword search and achieving high accu-
racy [7, 8]. However, these systems are limited by their pre-
defined vocabularies, which results in decreased performance
when encountering out-of-vocabulary keywords [4]. Recent ad-
vancements have attempted to address this limitation by incor-
porating hotword lists into automatic speech recognition (ASR)
[9, 10], thereby enhancing recall and accuracy for target key-
words. Despite these improvements, such approaches often in-
cur high costs, making them less viable for deployment in low-
resource scenarios.

Currently, most UDKWS systems employ the query-by-
example (QbyE) approach [3, 4, 11]. Some studies allow
users to register speech templates for customized keywords,
called QbyA. [3, 12] conducted frame-level embedding extrac-
tion using a pre-trained acoustic model and utilized dynamic
time warping (DTW) for measuring similarity between the reg-
istration embedding and the query embedding. [4, 13] fo-

cused on studying acoustic word embedding to significantly
reduce matching cost. However, the QbyA method’s perfor-
mance is heavily dependent on recording consistency and en-
tails a laborious registration process [5]. Therefore, recent re-
search emphasizes cross-modal matching of text and speech
modalities for customized keywords, known as QbyT. [5] lever-
ages text-speech correspondence to achieve excellent perfor-
mance. [6] and [14] have optimized the matching scheme
and loss function, respectively, resulting in higher performance
gains. [15] achieves the current lowest Equal Error Rate (EER)
through larger-scale pre-training and negative mining. Despite
QbyT’s reliability and user-friendly registration process, chal-
lenges arise, especially for speakers with accents. Mispronun-
ciations of phonemes can significantly affect performance [16].

To tackle these challenges, we present MM-KWS, a novel
approach to UDKWS leveraging multi-modal enrollments of
text and speech templates. To ensure MM-KWS’s adaptabil-
ity across various languages, we employ a feature extractor
comprising several multilingual pre-trained models. To vali-
date MM-KWS’s effectiveness in Mandarin, we introduce the
WenetPhrase dataset, filling the gap in existing Mandarin KWS
datasets by providing evaluation data for confusable words.
Furthermore, we integrate advanced data augmentation tools
for hard case mining to bolster MM-KWS’s capability to dis-
tinguish confusable words. As a result, MM-KWS outper-
forms previous approaches on both LibriPhrase and Wenet-
Phrase datasets and exhibits outstanding zero-shot performance.
The implementation code of our proposed model and Wenet-
Phrase dataset are available at Project page1. Our main contri-
butions are as follows:

• We propose MM-KWS, a novel multi-modal prompts for
user-defined keyword spotting method that utilizes text and
speech templates as multi-modal enrollments.

• We introduce several multilingual pre-trained models to the
keyword spotting task efficiently and validate the high per-
formance of MM-KWS on English and Mandarin data.

• We employ advanced data augmentation tools for hard case
mining in keyword spotting tasks, thereby strengthening
MM-KWS’s capability to distinguish confusable keywords.

2. Proposed Method
In this section, we introduce our proposed model, Multi-modal
Prompts for User-defined Keyword Spotting (MM-KWS). MM-
KWS consists of three sub-modules: a feature extractor, a pat-
tern extractor, and a pattern discriminator. The overall architec-
ture is shown in Figure 1.

1https://github.com/aizhiqi-work/MM-KWS
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Figure 1: Overall architecture of the proposed model, MM-KWS. Multi-modal information by extracting embeddings from enrolled text
and speech templates to match with query speech embeddings.

2.1. Architecture

Feature Extractor: The feature extractor module comprises
a query branch and a support branch, as illustrated in Figure
1. Inspired by [6, 16], we adopt the Conformer architecture
[17] as the audio encoder to transform the query speech into
the speech embedding. The support branch comprises a dual-
branch text feature extractor and a high-performance speech
encoder. These components extract phoneme, text, and speech
embeddings from text and speech templates, respectively.

Through the feature extractor module, we represent the
query speech embedding as Eq

a ∈ RTq
a×d, the support phoneme

embedding as Es
p ∈ RTs

p×d, the support text embedding as
Es

t ∈ RTs
t ×d, and the support speech embedding as Es

a ∈
RTs

a×d, where T q
a represents the query speech frame length.

T s
p and T s

t represent the number of phonemes and subwords in
the support text, respectively. T s

a represents the length of the
support speech frame, and d represents the frame dimension.

Pattern Extractor: The pattern extractor is built upon
the self-attention mechanism. As elucidated in [14], the self-
attention method yields commendable cross-modal matching
performance, particularly exhibiting efficiency in KWS. The
pattern extractor comprises a query-by-text attention module
(QTAM) and a query-by-audio attention module (QAAM).

The QTAM module processes three inputs: the query
speech embedding Eq

a, the support phoneme embedding Es
p,

and the support text embedding Es
t . To differentiate features

derived from these sources, we use three learnable coding vec-
tors etype, each indicating the source of the features. Temporal
position encoding, denoted as epos and following sinusoidal po-
sition encoding, is also incorporated. This results in the trans-
former inputs as shown in Equation (1).

E = E + epos + etype (1)

Subsequently, the QTAM is utilized to conduct cross-modal
matching between text and speech modalities, specifically de-
termining whether the query speech corresponds to the target
text. The transformed features Eq

a, Es
p, and Es

t are concate-
nated along the temporal dimension as Ec

ta, and the joint fea-

tures Ej
ta are computed using self-attention:

Ec
ta = (Eq

a;Es
p;E

s
t ) ∈ R(Tq

a+Ts
p+Ts

t )×d (2)

Ej
ta = Attention(Ec

ta, E
c
ta, E

c
ta) ∈ R(Tq

a+Ts
p+Ts

t )×d (3)

The QAAM takes two specific inputs: the query speech em-
bedding Eq

a and the support speech embedding Es
a. The QAAM

is utilized to determine if the query speech corresponds to the
enrolled speech templates. To distinguish between embeddings
from these sources, we apply similar learnable type coding vec-
tors and position encoding as outlined in Equation (1). The joint
features Ej

aa are calculated using the defined attention mecha-
nism:

Ec
aa = (Eq

a;Es
a) ∈ R(Tq

a+Ts
a )×d (4)

Ej
aa = Attention(Ec

aa, E
c
aa, E

c
aa) ∈ R(Tq

a+Ts
a )×d (5)

Pattern Discriminator: For the pattern discriminator, we
employ the GRU module to derive the respective utterance-level
posterior probabilities from the joint embedding of QTAM and
QAAM, denoted as Puttt and Putta , respectively. MM-KWS
decision primarily relies on the more stable output from support
text, with support speech providing supplementary information.
Thus, the decision output is expressed as Puttt , enhanced by
Putta to jointly assess utterance-level matching.

Putt = σ(Wu · (Puttt + Putta) + bu) (6)
In addition, we computed the match probabilities for

phonemes Pphon and text Ptext from the phoneme sequences
(Ej

ta)phon and word sequences (Ej
ta)text in the joint embed-

ding of QTAM, respectively. The subscripts ’phon’ and ’text’
indicate frame indices in the ranges (T q

a , T q
a+T s

p ] and (T q
a+T s

p ,
T q
a + T s

p + T s
t ], respectively.

2.2. Training Approach

Our training objective is denoted by Ltotal, which consists of a
combination of three binary cross-entropy (BCE) losses. These
include the utterance-level loss (Lutt) as the main loss, and two
auxiliary losses: the phoneme-level detection loss (Lphon) and
the word-level detection loss (Ltext).

Ltotal = Lutt + Lphon + Ltext (7)



Table 1: Experimental results of the proposed MM-KWS model
on the Libriphrase dataset compared to the baseline model. (*):
our model with confusable keywords generation.

Method # Params AUC(%) ↑ EER(%) ↓

LH LE LH LE

Whisper-Tiny [18] 39M 73.37 89.19 33.04 17.31
Whisper-Small [18] 224M 82.90 95.92 21.45 8.14
Whisper-Large [18] 1550M 85.80 97.54 19.57 5.33

Triplet [19] N/A 54.88 63.53 44.36 32.75
CMCD [5] 0.7M 73.58 96.70 32.90 8.42
EMKWS [6] 3.7M 84.21 97.83 23.36 7.36
PhonMatchNet [14] 0.7M 88.52 99.29 18.82 2.80
CED [16] 3.6M 92.70 99.84 14.40 1.70
AdaKWS-Tiny [15] 15M 93.75 99.80 13.47 1.61
AdaKWS-Small [15] 109M 95.09 99.82 11.48 1.21

MM-KWS 3.9M 94.02 99.98 12.45 0.41
MM-KWS* 3.9M 96.25 99.95 9.30 0.68

In evaluating the similarity between the query branch and
support branch as a whole (Lutt), we assign a label of 1 if the
query speech is the target keyword; otherwise, the label is 0.
Additionally, Lphon and Ltext are utilized to assess whether
the target unit is present in the query speech. A label of 1 is
assigned if the query speech contains the phonemes or words of
the support text; otherwise, the label is 0.

2.3. Data Augmentation with Advanced Tools

To enhance the robustness of MM-KWS against confusable
words, we leverage advanced data augmentation tools, which
involve confusable keyword generation (Stage 1) and speech
synthesis (Stage 2).

In Stage 1, our objective is to acquire words susceptible
to confusion, primarily involving semantically or phonetically
similar words. Initially, we employ a rule-based approach,
leveraging a pre-trained grapheme-to-phoneme (G2P) [14, 20]
model and DistilBERT [21] to convert a corpus of common
words in the target language into phoneme sequences and se-
mantic embeddings, respectively. Subsequently, we compute
edit distances on phoneme sequences to identify words phonet-
ically similar to the target word, thus establishing closely related
terms. To pinpoint words with similar semantics, we calculate
the cosine similarity between their semantic embeddings and
those of the target word. Additionally, through word permuta-
tion, we generate complementary negative instances. Further-
more, we harness a large language model to produce a substan-
tial corpus of negative instances of the target word that could
occur in real-world scenarios.

In Stage 2, given the absence of corresponding audio data
for the generated confused words, we employed a multilingual
ZS-TTS2 [22] for speech synthesis. This study involved the
generation of a total of 1.5 million English data and 2.4 million
Mandarin data for the training of MM-KWS.

3. Experiments
We implemented our method using PyTorch and conducted ex-
periments on x86 Linux machines equipped with 4 NVIDIA
4090 GPUs.

2https://great-research.github.io/tsct-tts-demo/

Table 2: Data samples and benchmark on WenetPhrase.

(a) Examples of WenetPhrase.

Anchor Easy negatives Hard negatives

"宁愿"
("ning2yuan4")

"沙漠", "得知", "公务"
("sha1mo4", "de2zhi1",

"gong1wu4")

"庭院", "行院","情愿"
("ting2yuan4", "xing2yuan4",

"qing2yuan4")

"青年人"
("qing1nian2ren2")

"周期性","敲门","婚姻法"
("zhou1qi1xing4","qiao1men2",

"hun1yin1fa3")

"青年","中年人","青年团"
("qing1nian2","zhong1nian2ren2",

"qing1nian2tuan2")

(b) Experimental results of the proposed MM-KWS model on Wenet-
Phrase dataset compared to the baseline model.

Method # Params AUC(%) ↑ EER(%) ↓ Latency
(MS)↓WH WE WH WE

Whisper-Tiny [18] 39M 56.53 60.67 44.66 45.38 102
Whisper-Small [18] 244M 57.31 72.20 44.53 35.56 183
Whisper-Large [18] 1550M 56.46 88.77 48.76 15.51 316
FunASR† [10] 220M 58.31 99.02 45.03 3.62 300

MM-KWS 3.9M 83.73 99.79 23.88 1.95 6
MM-KWS* 3.9M 85.84 99.15 22.06 4.25 6

3.1. Datasets

• LibriPhrase: We constructed LibriPhrase in accordance
with [5, 14]. The training dataset is derived from train-clean-
100/360, while the test dataset is extracted from train-others-
500. The test dataset is further divided into two parts: Lib-
riPhrase Easy (LE) and LibriPhrase Hard (LH). Evaluation
metrics primarily include Equal Error Rate (EER) and Area
Under the ROC Curve (AUC).

• WenetPhrase: We introduce the WenetPhrase dataset to
evaluate MM-KWS for Mandarin at the scale of LibriPhrase.
Speech segmentation was conducted using a forced align-
ment algorithm [23] on approximately 1000 hours of Wenet-
Speech M/S data [24]. Text tokenization was performed us-
ing Jieba to obtain target word lists. Subsequently, speech
segments with durations ranging from 0.5 to 2 seconds and
containing between 2 and 6 words were selected. This pro-
cess yielded approximately 122 K training classes and 54 K
test classes, for a total of 2.9 M samples. We constructed
WenetPhrase Easy (WE) and WenetPhrase Hard (WH) sub-
sets. Examples of the WenetPhrase dataset is shown in Table
2a. Evaluation metrics include EER and AUC.

• SPC: We assess the zero-shot performance of MM-KWS
employing the Speech Commands dataset (SPC) [25]. Fol-
low the settings in [13], we conduct evaluation on multi-
classification tasks. Specifically, 10 target keywords are
randomly chosen, while the remaining 20 keywords are
designated as unknown classes. We utilize Acc(close)
and Acc(open) to measure multi-classification performance,
where Acc(close) does not contain unknown classes.

3.2. Training Details

We utilize Tiny Conformer [17] as the audio encoder in the
query branch, as depicted in Figure 1. The Conformer ar-
chitecture is configured with {6 encoder layers, encoder di-
mension of 128, convolution kernel of size 3, and 4 attention
heads}. In the support branch, we employ multilingual Distil-
BERT [21] to derive 768-dim text embedding, use multilingual
G2P [14, 20] for converting text into 64-dim phoneme embed-
ding, and leverage the 18-layer high-performance multilingual



(a) (b)
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Figure 2: Visualization of pattern extractor attention maps. The
target keyword is ”good boy”. (a) and (b) show positive exam-
ples, while (c) and (d) show negative examples, ”in the United
States.”

XLR-S(0.3B) [26, 27] to extract a 1024-dim speech embedding
from the speech templates. Notably, all supported modules are
fixed-parameter and are pre-fetched only once during inference,
thereby eliminating additional computational costs. We incor-
porate three lightweight mappers to standardize all inputs into a
unified 128-dim embedding. Both Attention modules in the pat-
tern extractor utilize {2 encoder layers and 4 attention heads}.
The output dimension of GRU is 64-dim. For the training pro-
cess, we employ the Adam optimizer, with 40k training steps.

4. Results
4.1. Comparative Evaluation of MM-KWS

Table 1 presents a comparison between MM-KWS and previ-
ous state-of-the-art methods on the LibriPhrase dataset. The re-
sults indicate significant performance improvements with MM-
KWS, particularly on LH subset. Notably, MM-KWS*, trained
using confusable keywords generation, exhibits an AUC score
of 96.25% and an EER of 9.30% on LH, surpassing that of
AdaKWS [15] with larger parameters and pre-trained on a more
extensive dataset.

Similarly, we assess the performance of MM-KWS and
state-of-the-art ASR models on the WenetPhrase dataset, as
shown in Table 2b. We observe that the difficulty level of
WE is comparable to that of LE. Whisper-large [18] demon-
strates commendable performance, and FunASR† [10] model
equipped with a hot word list achieves better results on WE.
However, these ASR systems encounter challenges in process-
ing WH data, suggesting that identifying confusing words in
Mandarin poses greater difficulty. Notably, MM-KWS ex-
hibits strong performance on WenetPhrase, achieving an AUC
of 99.79% and an EER of 1.95% on WE. With data augmen-
tation, MM-KWS* attains an AUC of 85.84% and an EER of
22.06% on WH. compared to these ASR systems, MM-KWS
demonstrates only a 6ms latency.

4.2. The Zero-Shot Performance of MM-KWS

We employ SPC to assess the zero-shot performance of MM-
KWS in multi-classification tasks. The baseline system adopts a

Table 3: The zero-shot performance of MM-KWS on SPC.

Method # of supports SPC

Acc(close)↑ Acc(open)↑

QbyA-baseline [13] 1 69.0±1.67 66.0±1.03
5 90.5±0.53 80.6±0.44

MM-KWS 0 94.4±0.18 88.4±0.28
1 95.2±0.17 90.6±0.19

query-by-audio approach [13]. Noteworthy is the subpar perfor-
mance demonstrated by the QbyA-baseline when dealing with
a restricted number of registered speech inputs. In contrast,
MM-KWS demonstrates outstanding performance solely with
text input, and its effectiveness is further heightened by multi-
modal enrollments.

4.3. Visualization of pattern extractor attention maps

We visualized the attention maps of the two attention modules
in the pattern extractor to investigate the fundamental principles
of MM-KWS for discriminating keywords. Figure 2 illustrates
these visualizations: (a) depicts the response of phoneme and
text embedding along with the query speech embedding dur-
ing positive sample discrimination, while (b) illustrates the re-
sponse of registered speech embedding and query speech em-
bedding. In contrast, (c) and (d) represent the scenarios during
discrimination of negative samples. It is evident that all three
patterns demonstrate clear monotonicity when the test speech
contains the target keyword. Conversely, when the test speech
is a negative example, such monotonicity is absent. This obser-
vation highlights that the pattern extractor aligns query speech
at different levels to determine target keywords.

4.4. Ablation studies of MM-KWS

Table 4 presents our ablation study results. Experiments prove
that adding confusable keywords generation, support speech
branch, and auxiliary loss all help make MM-KWS better.

Table 4: Ablation studies of MM-KWS.

Method AUC(%) ↑ EER(%) ↓

LH LE LH LE

MM-KWS 96.25 99.95 9.30 0.68
w/o confusable keywords generation 94.02 99.98 12.45 0.41
w/o support speech branch 95.36 99.94 10.41 0.82
w/o auxilary loss 93.48 99.89 12.95 1.35

5. Conclusions
In this paper, we introduce MM-KWS, a novel approach for
user-defined keyword spotting that leverages both text and
speech modalities for multi-modal prompts. By employing sev-
eral multilingual pre-trained models, MM-KWS showcases its
adaptability across Mandarin and English datasets. Moreover,
incorporating advanced data augmentation tools for hard case
mining substantially improves MM-KWS’s capacity to distin-
guish confusable keywords. Moving forward, we plan to extend
this approach into a unified single-model multilingual frame-
work and streamline its deployment on end-side devices by pri-
oritizing model lightweighting, aiming to validate its efficacy in
real-world scenarios.
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