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Abstract
This paper introduces a novel framework for open-set speaker
identification in household environments, playing a crucial role
in facilitating seamless human-computer interactions. Address-
ing the limitations of current speaker models and classification
approaches, our work integrates an AudioLM frontend with a
few-shot rapid tuning neural network (NN) backend for en-
rollment, employing task-optimized Speaker Reciprocal Points
Learning (SRPL) to enhance discrimination across multiple
target speakers. Furthermore, we propose an enhanced ver-
sion of SRPL (SRPL+), which incorporates negative sample
learning with both speech-synthesized and real negative sam-
ples to significantly improve open-set SID accuracy. Our ap-
proach is thoroughly evaluated across various multi-language
datasets, demonstrating its effectiveness in achieving high us-
ability for complex household multi-speaker scenarios and en-
hancing open-set performance by up to 27% over the direct use
of state-of-the-art AudioLM model.
Index Terms: speaker identification, speaker recognition,
open-set learning, few-shot learning, speech synthesis

1. Introduction
In household environments, the use of AI agents to accurately
identify speakers through speech, a method not limited by pos-
ture or obstacles, is increasing. This is crucial for enabling
seamless interaction between humans and computers, including
interactions with large language model (LLM). Speaker identi-
fication, a subtask of speaker recognition, employs learning ap-
proaches to precisely recognize in-house speakers by effectively
utilizing the voice print characteristics of target speakers[1].

Recent advancements in speaker recognition have featured
the development of advanced speaker models, such as TDNN-
based [2], ResNet-based [3], and state-of-the-art self-supervised
learning models like WavLM [4, 5] and other large audio pre-
trained models (AudioLMs) [6]. Despite their general appli-
cability in representing speakers, these models primarily fo-
cus on binary classification [7], leaving room for improvement
in speaker identification (SID) algorithms for high usability in
complex household multi-speaker scenarios [8].

In SID, it is assumed that test utterances originate from a set
of pre-enrolled speakers, employing strategies like multi-class
classification loss [9, 10], prototype learning loss for few-shot
learning [11, 12], or graph-based learning method [13]. How-
ever, these approaches predominantly target closed-set classifi-
cation, which may not adequately serve real-world applications
facing the challenge of open-set speaker identification, where
the goal is to optimize detection of target-set speakers with con-
trastive accuracy and robustness to outliers [3].

Recent advancements in open-set SID have explored using

multiple Probabilistic Linear Discriminant Analysis (PLDA)
modules for outlier detection [14] and prototype-based loss
[15, 3] for improved identification. However, these methods,
not inherently designed for open-set recognition, often fail to
achieve optimal performance or lack the streamlined character-
istic of neural network (NN)-based approaches [15].

In response to the increasing interest in open-set learning
capabilities across various fields of pattern recognition [11, 16],
we propose a novel framework that integrates an AudioLM
frontend with a few-shot rapid tuning NN backend for enroll-
ment. This approach employs task-optimized Speaker Recip-
rocal Points Learning (SRPL) to improve open-set discrimina-
tion across multiple target speakers. Furthermore, we introduce
an enhanced version of SRPL (SRPL+), incorporating negative
sample learning with both speech-synthesized and real negative
samples to significantly improve the accuracy of open-set SID.
Our main contributions include:
• Introduction of SRPL for open-set speaker identification, fa-

cilitating rapid tuning enrollment on AudioLM.
• Incorporation of negative sample learning with SRPL+, uti-

lizing speech-synthesized and real negative samples for en-
hanced identification accuracy.

• Comprehensive evaluations on various multi-language
datasets, both qualitatively and quantitatively.

For detailed information on open-sourced resources and repro-
duction, visit our project website1.

2. Speaker Reciprocal Points Learning for
Open-set Speaker Identification

To enhance speaker distinction in specific domains, we propose
the use of lightweight neural adaptation models. These models
refine speaker embeddings for improved alignment with target
scenarios. Figure 1 illustrates our approach, which combines a
WavLM frontend [4] and a TDNN model pretrained on speaker
recognition tasks. The process generates an initial embedding
EmbLM, which the Lightweight Adapter transforms into a do-
main and speaker-specific embedding Embspk:

Embs = Adapter(TDNN(EmbLM)) (1)

This efficient adaptation serves as the enrollment phase in
speaker recognition.

2.1. Rapid AudioLM Backend Tuning Approach with
Speaker Reciprocal Points Learning (SRPL)

Our approach to open-set SID leverages advanced learning
strategies, emphasizing few-shot learning for rapid tuning to

1https://srplplus.github.io
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Figure 1: Illustration of open-set speaker identification archi-
tecture: customization via audio large model (LM) with SRPL-
based backend rapid tuning.

enhance speaker recognition with limited data. Moving be-
yond traditional prototype learning loss methods [12, 15] and
drawing inspiration from [11], we adapt reciprocal points learn-
ing for speaker recognition, termed Speaker Reciprocal Points
Learning (SRPL). SRPL effectively distinguishes both known
and unknown speakers, ensuring an optimal distribution of
known speaker embeddings and establishing a dedicated area
for characterizing unknown speakers, as shown in Figure 2.
Based on generalized pretrained AudioLM models, SRPL en-
hances the system’s robustness for open-set recognition.

As illustrate in Figure 3, SRPL aims to maximize the dis-
tance between learnable embeddings and Reciprocal Points
(RPs), with task-specific optimizations tailored for speaker
recognition. Since the AudioLM utilizes angle-based optimi-
ation, diverging from the original approach [11], we calculate
the distance between RPs and speaker embeddings using the in-
ner product, with the goal of maximizing this distance. Con-
sequently, the probability of identifying the target speaker is
evaluated based on the distance between the adapted speaker
embeddings and RPs.

p(k|Embs) =
e−Embs·RPk∑K
i=1 e

−Embs·RPi
, (2)

Ls(EmbLM, y = k; θ) = − log p(k|EmbLM), (3)

where RPk are the RPs for the corresponding known speakers
k.

Softmax Prototype Learning Reciprocal Points Learning

Figure 2: Conceptual illustration of the embedding space for
various open-set training losses. Figure is adapted from [11].

The core of SRPL focuses on optimizing the speaker mani-
fold by confining or reserving a general unknown pool U within
a predefined radius R, by referencing to RPs. The method aims
to ensure that the maximum distance from the unknown sample
set U to all reciprocal points in RP-set ℜ, does not exceed R.

max(Dist(U,ℜ)) ≤ R. (4)

Omitting detailed deductions and proofs as outlined in [11],
we can safely formulate the well-established and feasible dual
training loss as a marginal-based loss.
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Figure 3: SRPL and its enhanced SRPL+ with integration of
negative samples.

De(Embs,RPk) =∥ Embs −RPk ∥22,

Lr(EmbLM; θ, y = k) = max(De(Embs,RPk)−R, 0),
(5)

where we utilize Euclidean distance De(·, ·) to constrain the
magnitude of unknowns. This optimization does not rely on
prior knowledge of unknown negative data. Interestingly, the
goal can be achieved by optimizing known speaker embeddings
in relation to their reciprocal points.

To enhance SRPL further, we introduce center-focused
learning to improve the alignment of target speaker data with
its center points CPk, a well-established method for enhancing
training stability [1].

Lc(EmbLM, y = k; θ) = − log
eEmbs·CPk∑K
i=1 e

Embs·CPi
, (6)

Putting them together, the SRPL learning algorithm is per-
formed as:

LSRPL(Espk, y; θ) = Ls(·) + λrLr(·) + λcLc(·). (7)

2.2. SRPL Enhancement with Negative Samples (SRPL+)

2.2.1. Zero-shot Speech Synthesis Process for Negative Sam-
ples Synthesis

For typical household few-shot SID tasks, acquiring a pool of
unknowns U is often not feasible, leading to SRPL optimiza-
tion primarily with known samples. While this approach is ef-
fective, SRPL inherently can support enhancement through the
integration of negative samples that represent unknowns, fur-
ther improving its performance. As suggested by [11], em-
ploying a GAN for negative sample generation is a recog-
nized method. However, our evaluation finds such approach
is resource-intensive and unstable. To streamline the process
for speaker identification, we propose a zero-shot text-to-speech
(ZS-TTS) synthesis module to generate multi-speaker identity
speech samples, as illustrate in Figure 1.



Negative samples are generated using randomly selected
reference speakers from the LibriTTS dataset [17], ensuring
their voiceprints are distinct from those used in evaluations, thus
forming Usyn. Prosody controls are applied to enrich the diver-
sity of negative examples. This approach enhances the SRPL
framework, termed SRPL+. We utilize (anonymized) ZS-TTS
system [X], a zero-shot TTS model trained on the LibriTTS cor-
pus, facilitating efficient and diverse negative sample creation.

2.2.2. Learning Enhancement with Negative Audio Instance

For SRPL+, we refine our approach to utilize audio-level neg-
ative samples within the SRPL learning framework, as illus-
trated in Figure 3. This integration comprises two main pro-
cesses. First, it employs negative samples to enhance perfor-
mance by generating synthetic fake speakers, increasing the
robustness of synthesized Reciprocal Points (SynRPs). Next,
negative data primarily supports the adversarial learning pro-
cess, using negative samples usyn ∈ Usyn to maximize their
distance from all RPs, effectively targeting maximum entropy
H(·). This strategy realizes the SRPL+ optimization goal, en-
hancing the model’s ability to distinguish between known and
unknown speakers:

LSRPL+(EmbLM, y,Usyn; θ) = LSRPL(·)−λnsH(usyn,ℜ).
(8)

3. Experiments Settings
This section details our experimental setup, datasets, metrics,
and procedures, offering an overview necessary for replication.
Full details are on our project website1.

3.1. Datasets

• Qualcomm Speech Dataset: This dataset contains speech
utterances of four English keywords by 50 speakers, de-
signed for evaluating our open-set SID approach in a house-
hold multi-class classification scenario [18]. We apply 3-fold
cross-validation, calculating the mean performance across
datasets. For each split, a selection of 10 speakers is re-
served for testing targets, and 15 for testing outliers, with
the remainder potentially serving as real negative samples
for SRPL+. No overlap between outlier testing data and any
training-stage speaker data is ensured.

• FFSVC HiMia: Featuring utterances of the Chinese wake-
up command ’Hi Mia’ by over 80 speakers [19], this dataset’s
dev-set captures a range of distances and microphone-array
recordings. We focus on the near-field portion of the FFSVC
dev-set for our experiments. Similar to the Qualcomm setup,
10 speakers are reserved for target testing, employing 3-fold
cross-validation. The experimental setup mirrors that used
with the Qualcomm Speech Dataset.

3.2. Metrics

For evaluating our open-set SID tasks, we focus on multi-target
classification metrics common to the patter recognition and
speech processing domain. Area Under the Receiver Operating
Characteristic Curve (AUROC or AUC) is used as a threshold-
independent metric for SID [20]. It measures the probability
that a model correctly ranks a randomly chosen target example
higher than a randomly chosen negative example by plotting the
true positive rate against the false positive rate.

Nonetheless, AUC may not fully capture the unique chal-
lenges of open-set recognition, which requires effectively re-
jecting outliers while ensuring target speakers are accurately
identified. To address this, we employ the Open Set Classifica-
tion Rate (OSCR) [11, 21], a more robust metric that simulates
open-set recognition dynamics:

CCR(TH) = |{x∈TestDatak|argmaxk P (k|x)=k∩P (k|x)≥TH}|
|TestDatak| ,

(9)

FPR(TH) =
|{x | x ∈ Unknown ∩maxk P (k|x) ≥ TH}|

|Unknown| ,

(10)
where TH is a threshold. OSCR calculates the area under the
curve mapping the Correct Classification Rate (CCR) for known
classes to the False Positive Rate (FPR) for unknown data, of-
fering a threshold-independent evaluation for open-set.

3.3. Training and Inference Details

For our open-set SID system, we employ rapid fine-tuning with
SRPL or SRPL+ in few-shot settings. During the enrollment
phase, each target speaker contributing 20 enrolled utterances
alongside 20 synthesized utterances for model rapid tuning. For
SRPL+, we incorporate 1000+ negative samples from unknown
speakers, synthesized via ZS-TTS (SynNeg) or sourced from
the unused dataset portions (RealNeg). The system adapts using
a 3-layer MLP, linearly transforming to K-way speaker outputs,
and applies the SRPL/SRPL+ loss. Fine-tuning the adapter em-
ploys an SGD optimizer for 100 epochs, a process completed
in mere seconds. Rather than using cosine similarity, we evalu-
ate test speaker embeddings against reciprocal points using the
calculated logits from Equation (2). All RPs are learnable and
hyperparameter include λs are all set equally, without careful
search to achieve effectiveness.

4. Results
4.1. Comparative Evaluation of SRPL with Baselines

Table 1 shows our SRPL system’s performance relative to vari-
ous baseline methods. A basic comparison point is the WavLM
TDNN system, which applies cosine similarity for speaker iden-
tification, using mean embeddings of enrollment audios and co-
sine scores for probability output across different channels. This
approach reduces SID to a binary classification problem with-
out optimizing for multi-class scenarios. It does not reasonably
detects close-set scenarios, particularly with up to 10 speakers
in the FFSVC evaluation, and struggles with outliers, showing
its vulnerability in open-set contexts.

More advanced methodologies, such as Softmax fine-
tuning [10], prototype learning [12], and OpenFEAT learning
[15]—which builds on prototype learning by incorporating neg-
ative samples—are specifically designed for rapid tuning and
enrollment in speaker identification. Our SRPL system sur-
passes these methods, including the WavLM-TDNN baseline,
in both Prototype and OpenFEAT approaches. Its superiority is
evident not just in close-set evaluations, where many methods
excel in targeting speaker accuracy, but crucially in open-set
metrics, underscoring SRPL’s robust performance in 5-way and
10-way classification tasks.

With the introduction of negative samples, SRPL+ signif-
icantly outperforms baseline methods in OSCR scores, high-
lighting its advancement. This enhancement is also observed
with synthetic negative samples (SRPL+(SynNeg)), which



Table 1: Experimental results of open-set SID tasks.

Method Open-set Eval Close-set Eval Open-set Eval Close-set Eval

AUC(%)↑ OSCR(%)↑ ACC(%)↑ AUC(%)↑ OSCR(%)↑ ACC(%)↑

Qualcomm Speech [18] 5Way 10Way

WavLM-TDNN CosineDirect [4] 84.09 83.61 99.54 83.81 81.49 96.06

SoftmaxTune [10] 71.33 70.95 99.07 66.46 66.91 98.91
ProtoTypeTune [12] 71.54 71.39 99.54 88.87 88.45 98.91
OpenFEAT [15] 73.23 72.88 99.07 88.05 87.35 98.24
SRPL (Ours) 84.12 84.95 99.53 89.53 89.16 98.47

SRPL+(SynNeg) 92.51 92.48 99.90 92.06 91.25 98.69
SRPL+(RealNeg) 95.73 94.25 99.21 95.40 94.26 98.81

FFSVC HiMia [19] 5Way 10Way

WavLM-TDNN CosineDirect [4] 85.07 80.27 93.50 78.61 67.24 84.25

SoftmaxTune [10] 75.87 75.86 99.80 88.66 87.60 97.25
ProtoTypeTune [12] 75.77 74.67 97.50 88.87 86.90 95.25
OpenFEAT [15] 80.10 78.98 97.00 85.63 82.83 94.75
SRPL(Ours) 89.12 88.91 99.00 91.28 90.27 98.50

SRPL+(SynNeg) 95.71 94.97 99.00 95.48 94.83 99.00
SRPL+(RealNeg) 93.04 91.93 98.00 94.32 92.71 97.80

demonstrates excellent results. Moreover, in close-set metrics,
SRPL+ maintains strong performance, showcasing its compre-
hensive effectiveness in open-set speaker identification.

4.2. Supplementary Analyses for SRPL for Open-set SID

Figure 4 showcases a t-SNE visualization of speaker embed-
dings, revealing that, for the WavLM-TDNN baseline, embed-
dings are not distinctively separated from unknowns, indicat-
ing a lack of discriminability. In contrast, SRPL’s rapid tun-
ing markedly enhances the discrimination of speaker embed-
dings, effectively clustering unknowns into specific regions and
improving the grouping of known target speakers. The soft-
max optimization, focusing on the angle of distribution, per-
forms suboptimally compared to SRPL. While the OpenFEAT
method, an advancement on prototype learning, shows im-
proved class cohesion when learning with negatives, it falls
short in separating negative instances.

Table 2 evaluates the efficacy of SRPL’s components. Uti-
lizing an angular-aware distance metric, concentrating on center
points, and incorporating negative samples for both synthesized
centers and adversarial learning significantly bolster SRPL’s
overall performance in speaker recognition. The backend tun-
ing process is efficient, requiring only 200 seconds to safely
converge on GPU. The use of 1000+ negative data for optimal
performance adds only an additional 80 seconds, highlighting
its practical feasibility.

Table 2: Ablation Studies and Training Cost Analysis for SRPL.

Method Open-set (10-Way) Tuning Cost

AUC(%)↑ OSCR(%)↑ (GPU)

SRPL+ 95.40 94.26 280sw/o SynCenters 93.31 92.83

SRPL 89.53 89.16
200sw/o CenterFocus 88.05 88.30

w/o SpkTaskOptimize 87.50 86.01

5. Conclusions and Limitations
The challenges of current speaker recognition systems for open-
set speaker identification are evident. This study introduces

OpenFEAT(ProtoTypeTune+)

Original WavLM-TDNN

SRPL+(Ours)

SoftmaxTune

Figure 4: t-SNE visualization of speaker embeddings for targets
and outliers in testing datasets for SRPL+ and baseline systems.

Speaker Reciprocal Points Learning (SRPL), a novel algorithm
specifically optimized for open-set SID, leveraging the state-of-
the-art AudioLM combined with a few-shot rapid tuning neu-
ral network backend for enrollment. This approach models un-
known speakers using known speaker samples. It is further en-
hanced by SRPL+, effectively trained with negative samples, in-
cluding zero-shot TTS-synthesized samples or real samples col-
lected from household AI agents. Our method demonstrates a
significant performance improvement over existing techniques,
notably enhancing usability in household environments. De-
spite its effectiveness, we acknowledge that the open-set recog-
nition performance is not yet optimal for some highly complex
and far-field scenarios, likely due to the inherent limitations of
the AudioLM backbone. Moving forward, we aim to refine our
methodology to better address these challenges, potentially in-
corporating multimodal audio-visual approaches or other meth-
ods to enhance system robustness.
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